Nature of Solutions of Linear Equations in Two Variables :
In this section, we will learn how to find the nature of solutions of linear equations in two variables.
By solving any linear equation in two variables, we may have the following solutions.
(i) Unique solution
(ii) Infinitely many solution
(iii) No solution.
To apply the concept given below, the given equations will be in the form
a1x + b1y + c1 = 0
a2x + b2y + c2 = 0
(i) a1/a2 ≠ b1/b2, we get a unique solution
(ii) a1/a2 = a1/a2 = c1/c2, there are infinitely many solutions.
(iii) a1/a2 = a1/a2 ≠ c1/c2, there is no solution
Example 1 :
On comparing the ratios a₁/a₂, b₁/b₂ and c₁/c₂, find out whether the lines representing the following pairs of linear equations intersect at a point, are parallel or coincident.
(i) 5 x – 4 y + 8 = 0
7 x + 6 y – 9 = 0
Solution :
From the given equations, let us find the values of a1, a2, b1, b2, c1 and c2
a1 = 5, b1 = -4, c1 = 8
a2 = 7, b2 = 6, c2 = -9
a1/a2 = 5/7 ------(1)
b1/b2 = -4/6 ------(2)
c1/c2 = -8/9 ------(3)
(1) ≠ (2)
Here, a1/a2 ≠ b1/b2
Hence it has unique solution.
(ii) 9 x + 3 y + 12 = 0
18 x + 6 y + 24 = 0
Solution :
From the given equations, let us find the values of a1, a2, b1, b2, c1 and c2
a1 = 9, b1 = 3, c1 = 12
a2 = 18, b2 = 6, c2 = 24
a1/a2 = 9/18 = 1/2 ------(1)
b1/b2 = 3/6 = 1/2 ------(2)
c1/c2 = 12/24 = 1/2 ------(3)
(1) = (2) = (3)
Here a1/a2 = b1/b2 = c1/c2
The given lines are having infinitely many solution.
(iii) 6 x - 3 y + 10 = 0
2 x - y + 9 = 0
Solution :
From the given equations, let us find the values of a1, a2, b1, b2, c1 and c2
a1 = 6, b1 = -3, c1 = 10
a2 = 2, b2 = -1, c2 = 9
a1/a2 = 6/2 = 3
b1/b2 = -3/-1 = 3
c1/c2 = 10/9
Here, a1/a2 = b1/b2 ≠ c1/c2
Hence it has no solution.
After having gone through the stuff given above, we hope that the students would have understood, nature of solutions of linear equations in two variables.
Apart from the stuff given in this section, if you need any other stuff in math, please use our google custom search here
If you have any feedback about our math content, please mail us :
v4formath@gmail.com
We always appreciate your feedback.
You can also visit the following web pages on different stuff in math.
WORD PROBLEMS
Word problems on simple equations
Word problems on linear equations
Word problems on quadratic equations
Area and perimeter word problems
Word problems on direct variation and inverse variation
Word problems on comparing rates
Converting customary units word problems
Converting metric units word problems
Word problems on simple interest
Word problems on compound interest
Word problems on types of angles
Complementary and supplementary angles word problems
Trigonometry word problems
Markup and markdown word problems
Word problems on mixed fractrions
One step equation word problems
Linear inequalities word problems
Ratio and proportion word problems
Word problems on sets and venn diagrams
Pythagorean theorem word problems
Percent of a number word problems
Word problems on constant speed
Word problems on average speed
Word problems on sum of the angles of a triangle is 180 degree
OTHER TOPICS
Time, speed and distance shortcuts
Ratio and proportion shortcuts
Domain and range of rational functions
Domain and range of rational functions with holes
Graphing rational functions with holes
Converting repeating decimals in to fractions
Decimal representation of rational numbers
Finding square root using long division
L.C.M method to solve time and work problems
Translating the word problems in to algebraic expressions
Remainder when 2 power 256 is divided by 17
Remainder when 17 power 23 is divided by 16
Sum of all three digit numbers divisible by 6
Sum of all three digit numbers divisible by 7
Sum of all three digit numbers divisible by 8
Sum of all three digit numbers formed using 1, 3, 4
Sum of all three four digit numbers formed with non zero digits