HOW TO FIND RADIUS WHEN LENGTH OF TWO PARALLEL CHORDS ARE GIVEN

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Here we are going to see some examples problems on finding radius when length of two parallel chords are given.

Example 1 :

AB and CD are two parallel chords of a circle which are on either sides of the centre. Such that AB = 10 cm and CD = 24 cm. Find the radius if the distance between AB and CD is 17 cm.

Solution :

Consider the right triangles OEB and OFD,

In triangle OEB,

OB2  =  OE2 + EB2

OB2  =  x2 + 52  ---(1)

In triangle OFD,

OD2  =  OF2 + FD2

OD2 = (17-x)2 + 122 ---(2)

OB = OD (radius of the given circle)

(1)  =  (2)  

x2 + 52  =  (17-x)2 + 122

x2 + 52  =  172 + x2 - 2(17) x + 122

x2 + 25  =  289 + x2 - 34x + 144

x2 - x2 + 34x + 25 - 144 - 289  =  0

34x - 408  =  0

34(x - 12)  =  0

x  =  12 cm

By applying the value of x in the 1st equation, we get

OB2  =  122 + 52 

OB2  =  144 + 25  =  169

OB  =  √169  =  13 cm

Example 2 :

In the figure given below, AB and CD are two parallel chords of a circle with centre O and radius 5 cm such that AB = 6 cm and CD = 8 cm. If OP  AB and CD = OQ determine the length of PQ.

Solution :

Here we have two right triangles,

Triangle OPB and triangle OQD.

OB =  OD  =  radius of the circle  =  5 cm

In Δ OPB,

OB2  =  OP2 + PB2

OB2  =  OP2 + PB2

52  =  OP2 + 32

OP2  =  25 - 9

OP2  =  16

OP  =  √16

OP  =  4 cm

OD2  =  OQ2 + QD2

52  =  OQ2 + 42

25  =  OQ2 + 16

OQ2  =  25 - 16

OQ2  =  9

OQ  =  √9

OQ  =  3 cm

PQ  =  OP - OQ

  =  4 - 3

  =  1 cm

Hence the length of PQ is 1 cm

Example 3 :

In the figure given below, AB and CD are two parallel chords of a circle with centre O and radius 5 cm. Such that AB = 8 cm and CD = 6 cm. If OP = AB and OQ   CD.determine the length PQ.

Solution : 

Consider the triangles APO and COQ

OA  =  OC  =  radius of the circle  =  5 cm

AP  =  PB  =  4 cm

CQ  =  QD  =  3 cm

In triangle APO,

OA2  =  AP2 + PO2

52  =  42 + PO2

 PO  =  √(25 - 16)

 PO  =  √9

PO  =  3 cm

In triangle COQ,

OC2  =  OQ2 + CQ2

52  =  OQ2 + 32

OQ  =  √(25 - 9)

OQ  =  √16

OQ  =  4 cm

PQ  =  PO + OQ

  =  3 + 4

  =  7 cm

Hence the length of PQ is 7 cm.

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact Us  |  Privacy Policy

©All rights reserved. onlinemath4all.com

Recent Articles

  1. AP Calculus BC Problems with Solutions

    Dec 20, 25 10:51 AM

    AP Calculus BC Problems with Solutions

    Read More

  2. AP Precalculus Problems and Solutions (Part - 1)

    Dec 20, 25 10:49 AM

    AP Precalculus Problems and Solutions (Part - 1)

    Read More

  3. AP Calculus AB Problems with Solutions (Part - 1)

    Dec 20, 25 10:49 AM

    apcalculusab1.png
    AP Calculus AB Problems with Solutions (Part - 1)

    Read More