FORMULA FOR a SQUARED MINUS b SQUARE

In this section, we are going to see the formula or factored form of (a2 - b2)

That is, 

a2 - b2  =  (a + b)(a - b)

Solved Problems

Problem 1 : 

Factor : 

x2 - y2

Solution :

x2 - yis in the form of a2 - b2

Comparing  a2 - b2 and  x2 - y2, we get

a  =  x

b  =  y

Write the formula for  a2 - b2.

 a2 - b=  (a + b)(a - b)

Substitute x for a and y for b. 

 x2 - y2  =  (x + y)(x - y)

So, the factors of x2 - yare

(x + y) and (x - y)

Problem 2 : 

Factor : 

x2 - 4

Solution :

(x2 - 4) can be written as 

x2 - 22

x2 - 22 is in the form of a2 - b2

Comparing  a2 - b2 and  x2 - 22, we get

a  =  x

b  =  2

Write the formula for  a2 - b2.

 a2 - b2  =  (a + b)(a - b)

Substitute x for a and 2 for b. 

 x2 - 22  =  (x + 2)(x - 2)

So, the factors of x2 - 4 are

(x + 2) and (x - 2)

Problem 3 : 

Factor : 

25x2 - 9

Solution :

(25x2 - 9) can be written as 

(5x)2 - 32

(5x)2 - 32 is in the form of a2 - b2

Comparing  a2 - b2 and  (5x)2 - 32, we get

a  =  5x

b  =  3

Write the formula for  a2 - b2.

 a2 - b2  =  (a + b)(a - b)

Substitute 5x for a and 3 for b. 

 (5x)2 - 32  =  (5x + 3)(5x - 3)

So, the factors of 25x2 - 9 are

(5x + 3) and (5x - 3)

Problem 4 : 

If x2 - y2  =  16 and x + y  =  8, then find the value of

(x - y)

Solution :

We can factor (x2 - y2) using the formula

(a2 - b2)  =  (a + b)(a - b)

That is

 x2 - y2  =  (x + y)(x - y)

Substitute 16 for (x2 - y2) and 8 for (x + y).  

16  =  8(x - y)

Divide each side by 8. 

2  =  x - y

So, the value of (x - y) is 2. 

Problem 5 : 

If 36x2 - 9y2  =  52 and 6x - 3y  =  4, then find the value of

(6x + 3y)

Solution :

We can factor (36x2 - 9y2) using the formula

(a2 - b2)  =  (a + b)(a - b)

That is

36x2 - 9y2  =  (6x)2 - (3y)2

36x2 - 9y2  =  (6x + 3y)(6x - 3y)

Substitute 52 for (36x2 - 9y2) and 4 for (6x - 3y).  

52  =  (6x + 3y) ⋅ 4

Divide each side by 4. 

13  =  6x + 3y

So, the value of (6x + 3y) is 13. 

Problem 6 : 

Find the value of the numerical expression given below using algebraic identity.   

(12)2 / 96

Solution :

(12)2 / 96  =  (12)2 / (100 - 4)

(12)2 / 96  =  (12)2 / (102 - 22)

Factor (102 - 22) using the formula for (a2 - b2).

(12)2 / 96  =  (12)2 / [(10 + 2)(10 - 2)]

(12)2 / 96  =  (12)2 / [(12)(8)]

(12)2 / 96  =  12 / 8

(12)2 / 96  =  3 / 2

So, the value of (12)2 / 96 is

3/2 

Algebraic Identities

Algebraic identities are equalities which remain true regardless of the values of any variables which appear within it.

To know more identities in Algebra, 

Please click here

In our website, we have provided two calculators for algebra identities.

One is to find the expansion for (a + b)n and other one is to find the expansion for (a - b)n.  

Please click the below links to get expansion calculator that you need.  

Expansion Calculator for (a + b)n

Expansion Calculator for (a - b)n

If you would like to have problems on algebraic identities, please click the link given below. 

Worksheet on Algebraic Identities

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 52)

    Oct 12, 24 12:41 AM

    digitalsatmath45.png
    Digital SAT Math Problems and Solutions (Part - 52)

    Read More

  2. Exponential Equations Problems and Solutions (Part 5)

    Oct 11, 24 09:10 AM

    Exponential Equations Problems and Solutions (Part 5)

    Read More

  3. SAT Math Resources (Videos, Concepts, Worksheets and More)

    Oct 11, 24 06:54 AM

    SAT Math Resources (Videos, Concepts, Worksheets and More)

    Read More