## FORMULA FOR a SQUARED MINUS b SQUARE

In this section, we are going to see the formula or factored form of (a2 - b2)

That is,

a2 - b2  =  (a + b)(a - b)

## Solved Problems

Problem 1 :

Factor :

x2 - y2

Solution :

x2 - yis in the form of a2 - b2

Comparing  a2 - b2 and  x2 - y2, we get

a  =  x

b  =  y

Write the formula for  a2 - b2.

a2 - b=  (a + b)(a - b)

Substitute x for a and y for b.

x2 - y2  =  (x + y)(x - y)

So, the factors of x2 - yare

(x + y) and (x - y)

Problem 2 :

Factor :

x2 - 4

Solution :

(x2 - 4) can be written as

x2 - 22

x2 - 22 is in the form of a2 - b2

Comparing  a2 - b2 and  x2 - 22, we get

a  =  x

b  =  2

Write the formula for  a2 - b2.

a2 - b2  =  (a + b)(a - b)

Substitute x for a and 2 for b.

x2 - 22  =  (x + 2)(x - 2)

So, the factors of x2 - 4 are

(x + 2) and (x - 2)

Problem 3 :

Factor :

25x2 - 9

Solution :

(25x2 - 9) can be written as

(5x)2 - 32

(5x)2 - 32 is in the form of a2 - b2

Comparing  a2 - b2 and  (5x)2 - 32, we get

a  =  5x

b  =  3

Write the formula for  a2 - b2.

a2 - b2  =  (a + b)(a - b)

Substitute 5x for a and 3 for b.

(5x)2 - 32  =  (5x + 3)(5x - 3)

So, the factors of 25x2 - 9 are

(5x + 3) and (5x - 3)

Problem 4 :

If x2 - y2  =  16 and x + y  =  8, then find the value of

(x - y)

Solution :

We can factor (x2 - y2) using the formula

(a2 - b2)  =  (a + b)(a - b)

That is

x2 - y2  =  (x + y)(x - y)

Substitute 16 for (x2 - y2) and 8 for (x + y).

16  =  8(x - y)

Divide each side by 8.

2  =  x - y

So, the value of (x - y) is 2.

Problem 5 :

If 36x2 - 9y2  =  52 and 6x - 3y  =  4, then find the value of

(6x + 3y)

Solution :

We can factor (36x2 - 9y2) using the formula

(a2 - b2)  =  (a + b)(a - b)

That is

36x2 - 9y2  =  (6x)2 - (3y)2

36x2 - 9y2  =  (6x + 3y)(6x - 3y)

Substitute 52 for (36x2 - 9y2) and 4 for (6x - 3y).

52  =  (6x + 3y) ⋅ 4

Divide each side by 4.

13  =  6x + 3y

So, the value of (6x + 3y) is 13.

Problem 6 :

Find the value of the numerical expression given below using algebraic identity.

(12)2 / 96

Solution :

(12)2 / 96  =  (12)2 / (100 - 4)

(12)2 / 96  =  (12)2 / (102 - 22)

Factor (102 - 22) using the formula for (a2 - b2).

(12)2 / 96  =  (12)2 / [(10 + 2)(10 - 2)]

(12)2 / 96  =  (12)2 / [(12)(8)]

(12)2 / 96  =  12 / 8

(12)2 / 96  =  3 / 2

So, the value of (12)2 / 96 is

3/2

## Algebraic Identities

Algebraic identities are equalities which remain true regardless of the values of any variables which appear within it.

To know more identities in Algebra,

In our website, we have provided two calculators for algebra identities.

One is to find the expansion for (a + b)n and other one is to find the expansion for (a - b)n.

Please click the below links to get expansion calculator that you need.

Expansion Calculator for (a + b)n

If you would like to have problems on algebraic identities, please click the link given below.

Worksheet on Algebraic Identities Apart from the stuff given above, if you need any other stuff in math, please use our google custom search here.

Kindly mail your feedback to v4formath@gmail.com

## Recent Articles 1. ### Finding Two Numbers with the Given Difference and Product

Sep 29, 23 10:55 PM

Finding Two Numbers with the Given Difference and Product

2. ### Finding Two Numbers with the Given Sum and Product

Sep 29, 23 10:49 PM

Finding Two Numbers with the Given Sum and Product