FIND TRIGONOMETRIC RATIOS USING RIGHT TRIANGLES

To find all trigonometric ratios from the given right triangle, first we have to name the sides as hypotenuse side, opposite side and adjacent side. 

Hypotenuse Side :

The side which is opposite to 90 degree is known as hypotenuse side.

Opposite Side :

The side which is opposite to θ is known as opposite side

Adjacent Side :

Apart from hypotenuse and opposite side, the remaining third side of the triangle is known as adjacent side.

Generally we have 6 trigonometric ratios, those are sin θ, cos θ, tan θ, csc θ, sec θ and cot θ.

Formulas to find the values of the above six trigonometric ratios. 

sin θ  =  Opposite side/hypotenuse

cos θ  =  Adjacent side/hypotenuse

tan θ  =  Opposite side/Adjacent side

csc θ  =  Hypotenuse/Opposite side

sec θ  =  Hypotenuse/Adjacent side

cot θ  =  Adjacent side/Opposite side

From the above formulas, we ca get the following results.

sin θ and csc θ are reciprocal to each other 

cos θ and sec θ are reciprocal to each other

tan θ and cot θ are reciprocal to each other   

Example 1 :

In the right triangle shown below, find the six trigonometric ratios of the angle θ. 

Solution :

From the above triangle, we come to know that the right angled at B.

AC - hypotenuse  =  10

AB - opposite side  =  6 

BC - Adjacent side  =  8

Finding the vale of sin θ :  

sin θ  =  Opposite side/Hypotenuse

sin θ  =  AB/AC

sin θ  =  6/10

sin θ  =  3/5

Finding the vale of cos θ :  

cos θ  =  Adjacent side/Hypotenuse

cos θ  =  BC/AC

cos θ  =  8/10

cos θ  =  4/5

Finding the vale of tan θ :

tan θ  =  Opposite side/Adjacent side 

tan θ  =  AB/BC

tan θ  =  6/8

tan θ  =  3/4

Finding the vale of csc θ :  

csc θ = Hypotenuse /Opposite side

csc θ  =  AC/AB

csc θ  =  10/6

csc θ  =  5/3

Finding the vale of sec θ :  

sec θ = Hypotenuse /Adjacent side

sec θ  =  AC/BC

sec θ  =  10/8

sec θ  =  5/4

Finding the vale of cot θ :  

cot θ = Adjacent side/opposite side

cot θ  =  BC/AB

cot θ  =  8/6

cot θ  =  4/3

Example 2 :

In the right triangle shown below, find the six trigonometric ratios of the angle θ. 

Solution :

In the triangle above, right angle is at C.

AB - hypotenuse = 25

AC - opposite side = 7 

BC - Adjacent side = 24

Finding the vale of sin θ :  

sin θ  =  Opposite side/Hypotenuse side 

sin θ  =  AC/AB

sin θ  =  7/25

Finding the vale of cos θ :  

cos θ  =  Adjacent side/Hypotenuse side 

cos θ  =  BC/AB

cos θ  =  24/25

Finding the vale of tan θ :  

tan θ  =  Opposite side/Adjacent side 

tan θ  =  AC/BC

tan θ  =  7/24 

Finding the vale of csc θ :  

csc θ  =  Hypotenuse /Opposite side

csc θ  =  AB/AC

csc θ  =  25/7 

Finding the vale of sec θ :  

sec θ  =  Hypotenuse /Adjacent side

 sec θ  =  AB/BC

sec θ   =  25/24

Finding the vale of cot θ :  

cot θ  =  Adjacent side/opposite side

cot θ  =  BC/AC

cot θ  =  24/7

Example 3 :

In the right triangle shown below, find the six trigonometric ratios of the angle θ. 

Solution :

From the above triangle right angled at C.

AB - hypotenuse = 37

AC - opposite side = 35 

BC - Adjacent side = 12

Finding the vale of sin θ : 

sin θ  =  Opposite side/Hypotenuse

sin θ  =  AC/AB

sin θ  = 35/37

Finding the vale of cos θ : 

cos θ  =  Adjacent side/Hypotenuse

cos θ  =  BC/AB

cos θ  =  12/37

Finding the vale of tan θ :

tan θ  =  Opposite side/Adjacent side

tan θ  =  AC/BC

tan θ  =  35/12 

Finding the value of csc θ : 

csc θ  =  Hypotenuse /Opposite side

csc θ  =  AB/AC

csc θ  =  37/35 

Finding the value of sec θ : 

sec θ  =  Hypotenuse/Adjacent side

sec θ  =  AB/BC

sec θ  =  37/12

Finding the value of cot θ : 

cot θ  =  Adjacent side/opposite side

cot θ  =  BC/AC

cot θ  =  12/35

Example 4 :

Given right angle shown, represent the value of tan A

trignometric-ratio-in-right-triangleq1

Solution :

AC - Hypotenuse

The side which is opposite to ∠A is opposite side. In this way, 

AB = Opposite side and BC = adjacent side

tan A = Opposite side / Adjacent side

tan A = AB / BC

tan A = 7/24

Example 5 :

Given right angle shown, represent the value of cos Q

trignometric-ratio-in-right-triangleq2

Solution :

Hypotenuse = SQ, opposite side = SR = 5 and adjacent side = 12

SQ2 = RS2 + RQ2

SQ2 = 52 + 122

= 25 + 144

= 169

SQ = √169

SQ = 13 = Hypotenuse

cos Q = Adjacent side / Hypotenuse

cos A = 12/13

Example 6 :

If sin x = 1/3, what is the value of cos x ?

Solution :

sin x = 1/3

To figure out the value of cos x, we need adjacent side.

Opposite side = 1x, hypotenuse = 3x

Adjacent side = ?

(Hypotenuse)2 = (Opposite side)2 + (Adjacent side)2

(3x)2 = (1x)2 + (Adjacent side)2

9x2 - 1x2 = Adjacent side2

Adjacent side2 = 8x2

Adjacent side = 8x2

= 2x√2

cos x = Adjacent side / Hypotenuse

= 2x√2 / 3x

= 2√2/3

Example 7 :

Given the right triangle ABC above, which of the following is equal to a/c ?

I. sin A         II. cos B        III. tan A

A) I only     B) II only 

 C) I and II only      D)  II and III only

trignometric-ratio-in-right-triangleq3

Solution :

Considering angle measure in A, we get 

a = opposite side, b = adjacent side and c - Hypotenuse

a/c = Opposite side / Hypotenuse

a/c = tan A

Considering angle measure in B, we get 

b = opposite side, a = adjacent side and c - Hypotenuse

a/c = adjacent side / Hypotenuse

a/c = cos B

By observing the options II and III are correct. So, option D is correct.

Example 8 :

In the triangle shown below AB = BC = 10 cm and AC = 12 cm.

trignometric-ratio-in-right-triangleq4

What is the value of sin θ ?

Solution :

Angle measure B is 90 degree.

sin θ = Opposite side / hypotenuse

Opposite side = 10, adjacent = 10 and hypotenuse = 12

sin θ = 10/12

sin θ = 5/6

Example 9 :

In the triangle shown below AB = BC = 10 cm and AC = 12 cm.

trignometric-ratio-in-right-triangleq5

In the triangle shown above, if tan A = 3/4, what is sin θ

Solution :

tan A = 3/4 = Opposite side / Adjacent side

Let 3x and 4x are the measures of opposite side and adjacent side respectively.

(Hypotenuse)2 = (Opposite side)2 + (Adjacent side)2

AB2 = (3x)2 + (4x)2

= 9x2 + 16x2

= 25x2

AB = 5x

sin θ = Opposite side / hypotenuse

= 3x/5x

sin θ = 3/5

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 167)

    May 22, 25 09:59 AM

    digitalsatmath211.png
    Digital SAT Math Problems and Solutions (Part - 167)

    Read More

  2. AP Calculus AB Problems with Solutions (Part - 23)

    May 21, 25 01:19 PM

    apcalculusab22.png
    AP Calculus AB Problems with Solutions (Part - 23)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 166)

    May 21, 25 05:33 AM

    digitalsatmath210.png
    Digital SAT Math Problems and Solutions (Part - 166)

    Read More