FIND THE MISSING SIDE OF A TRIANGLE USING THE PYTHAGOREAN THEOREM

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

In any right angled triangle, the length of square of hypotenuse is equal to the sum of the squares on the other two sides

In a right angled triangle, with hypotenuse c and legs a and b,

c2 = a2 + b2

Find the value of unknowns.

Example 1 :

Solution :

In figure ∆ABC and ∆ACD

In ∆ABC,

AB  =  2 cm, BC  =  2 cm and AC  =  y cm

By using Pythagorean theorem,

AB2 + BC2  =  AC2

22 + 22  =  y2

4 + 4  =  y2

y2  =  8

In ∆ACD,

AC  =  y cm, CD  =  3 cm and AD  =  x cm

AC2 + CD2  =  AD2

y2 + 32  =  x2

8 + 9  =  x2

x2  =  17

Now,

x  =  √17 and y  =  √8

x  =  4.12 cm and y  =  2.8 cm

Example 2 :

Solution :

In figure ∆ABC and ∆DAC

In ∆ABC,

AB  =  4 cm, BC  =  x cm and AC  =  y cm

By using Pythagorean theorem,

AB2 + BC2  =  AC2

42 + x2  =  y2

16 + x2  =  y2

x2  =  y2 – 16 -----(1)

In ∆DAC,

DA  =  2 cm, AC  =  y cm and DC  =  7 cm

DA2 + AC2  =  DC2

22 + y2  =  72

4 + y2  =  49

y2  =  49 – 4

y2  =  45 -----(2)

By applying, y2  =  45 in (1)

We get,

x2  =  y2 – 16

=  45 – 16

x2  =  29

x  =  √29 and y  =  √45

x  =  5.38 and y  =  6.70

Example 3 :

Solution :

In figure ∆ACB and ∆DAC

In ∆ACB,

AC  =  x cm, BC  =  2 cm and AB  =  3 cm

By using Pythagorean theorem,

AC2 + BC2  =  AB2

x2 + 22  =  32

x2 + 4  =  9

x2  =  5

In ∆DAC,

DA  =  1 cm, AC  =  x cm and DC  =  y cm

DA2 + AC2  =  DC2

12 + x2  =  y2

1 + 5  =  y2

y2  =  6

x  =  √5 and y  =  √6

x  =  2.23 and y  =  2.44

Example 4 :

Solution :

In figure ∆ACB and ∆ACD

In ∆ACB,

AC  =  ?, BC  =  x cm and AB  =  3 cm

By using Pythagorean theorem,

AC2+BC2  =  AB2

AC2+x2  =  32

AC2  =  9–x2 -----(1)

In ∆ACD,

AC  =  ?, CD  =  3 cm and AD  =  4 cm

AC2+CD2  =  AD2

AC2+32  =  42

AC2  =  7 -----(2)

By applying, AC2  =  7 in (1)

AC2  =  9–x2

7  =  9–x2

x2  =  9–7

x2  =  2

x  =  √2

x  =  1.414 

Example 5 :

Solution :

In figure ∆ABC

In ∆ABC,

AB  =  (x – 2) cm, BC  =  5 cm and AC  =  13 cm

By using Pythagorean theorem,

AB2 + BC2  =  AC2

(x–2)2+52  =  132

x2–4x+4+25  =  169

x2–4x+29–169  =  0

x2–4x–140  =  0

By factorization, we get

(x + 10) (x – 14)  =  0

x  =  - 10 and 14

Now, taking positive value 14.

So, the value of x is 14 cm.

Example 6 :

Solution :

In figure ∆ABC and ∆ABD

In ∆ABC,

AB  =  5 m, let BC  =  x m and AC  =  ?

By using Pythagorean theorem,

AB2 + BC2  =  AC2

52 + x2  =  AC2

25 + x2  =  AC2

AC2  =  25 + x2 -----(1)

In ∆ABD,

AB  =  5 m, AD  =  9 m

BD  =  BC + CD

=  x + x

=  (2x) m

AB2 + BD2  =  AD2

52 + (2x)2  =  92

25 + 4x2  =  81

4x2  =  81 – 25

4x2  =  56

x2  =  56/4

x2  =  14 -----(2)

By applying, x2  =  14 in (1)

AC2  =  25 + x2

AC2  =  25 + 14

AC2  =  39

Now,

AC  =  √39

AC  =  6.24

We taking this value Approximately,

So, the Length of AC is 6 m

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact Us  |  Privacy Policy

©All rights reserved. onlinemath4all.com

onlinemath4all_official_badge.png

Recent Articles

  1. ASTC Formula in Trigonometry

    Dec 23, 25 11:34 PM

    astc1
    ASTC Formula in Trigonometry - Concepts - Examples and Solved Problems

    Read More

  2. Coin Tossing Probability

    Dec 23, 25 11:29 PM

    Coin Tossing Probability - Concept - Sample Space - Formula - Solved Problems

    Read More

  3. Permutation and Combination

    Dec 23, 25 11:28 PM

    Permutation and Combination - Definition - Formulas - Shortcuts - Difference between permutation and combination

    Read More