Subscribe to our โถ๏ธ YouTube channel ๐ด for the latest videos, updates, and tips.
Exponent :
The exponent of a number says how many the number has to be multiplied by itself.
In 92 the '2' says that 9 has to be used twice twice in multiplication, so 92 = 9 ร 9 = 81.
In words : 92 can be called '9 to the power 2' or '9' to the second power, or simply '9 squared' Exponents are also called Powers or Indices.
Square Root :
Square root of a number is a value that can be multiplied by itself to give the original number.
The symbol of the square root is
โ
Square root of 9 is 3.
Because when 3 is multiplied by itself, we get 9.
Rule 1 :
xm โ xn = xm+n
Rule 2 :
xm รท xn = xm-n
Rule 3 :
(xm)n = xmn
Rule 4 :
(xy)m = xm โ ym
Rule 5 :
(x / y)m = xm / ym
Rule 6 :
x-m = 1 / xm
Rule 7 :
x0 = 1
Rule 8 :
x1 = x
Rule 9 :
xm/n = y -----> x = yn/m
Rule 10 :
(x / y)-m = (y / x)m
Rule 11 :
ax = ay -----> x = y
Rule 12 :
xa = ya -----> x = y
Rule 1 :
โa โ โb = โ(ab)
Rule 2 :
โa / โb = โ(a/b)
Rule 3 :
โaโ โa = a
Rule 4 :
โa = k -----> a1/2 = k
Rule 5 :
โa = b -----> a = b2
Problem 1 :
Simplify :
(a7 โ a2 โ a-4) / (a2 โ a-3 โ a4)
Solution :
(a7 โ a2 โ a-4) / (a2 โ a-3 โ a4) = a7+2-4 / a2-3+4
(a7 โ a2 โ a-4) / (a2 โ a-3 โ a4) = a5 / a3
(a7 โ a2 โ a-4) / (a2 โ a-3 โ a4) = a5-3
(a7 โ
a2 โ
a-4) / (a2 โ
a-3 โ
a4) = a2
Problem 2 :
Simplify :
(a6 โ b3) / (a2 โ b-3)2
Solution :
(a6 โ b3) / (a2 โ b-3)2 = (a6 โ b3) / [(a2)2 โ (b-3)2]
(a6 โ b3) / (a2 โ b-3)2 = (a6 โ b3) / (a4 โ b-6)
(a6 โ b3) / (a2 โ b-3)2 = a6-4 โ b3+6
(a6 โ b3) / (a2 โ b-3)2 = a2b9
Problem 3 :
If 82n + 3 = 4n + 5, then find the value of n.
Solution :
82n + 3 = 4n + 5
(23)2n + 3 = (22)n + 5
23(2n + 3) = 22(n + 5)
Equate the exponents.
3(2n + 3) = 2(n + 5)
6n + 9 = 2n + 10
4n = 1
n = 1/4
Problem 4 :
Simplify the following square root expression :
โ40 + โ160
Solution :
Decompose 40 and 160 into prime factors using synthetic division.

โ40 = โ(2 โ 2 โ 2 โ 5) = 2โ10
โ160 = โ(2 โ 2 โ 2 โ 2 โ 2 โ 5) = 4โ10
So, we have
โ40 + โ160 = 2โ10 + 4โ10
โ40 + โ160 = 6โ10
Problem 5 :
Simplify the following square root expression :
(14โ117) รท (7โ52)
Solution :
Decompose 117 and 52 into prime factors using synthetic division.

|
โ117 = โ(3 โ 3 โ 13) โ117 = 3โ13 |
โ52 = โ(2 โ 2 โ 13) โ52 = 2โ13 |
(14โ117) รท (7โ52) = 14(3โ13) รท 7(2โ13)
(14โ117) รท (7โ52) = 42โ13 รท 14โ13
(14โ117) รท (7โ52) = 42โ13 / 14โ13
(14โ117) รท (7โ52) = 3
Problem 6 :
Simplify the following square root expression :
(โ3)3 + โ27
Solution :
(โ3)3 + โ27 = (โ3 โ โ3 โ โ3) + โ(3 โ 3 โ 3)
(โ3)3 + โ27 = (3 โ
โ3) + 3โ3
(โ3)3 + โ27 = 3โ3 + 3โ3
(โ3)3 + โ27 = 6โ3
Subscribe to our โถ๏ธ YouTube channel ๐ด for the latest videos, updates, and tips.
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
ยฉAll rights reserved. onlinemath4all.com
Dec 05, 25 04:04 AM
Dec 03, 25 07:02 AM
Dec 02, 25 09:27 AM