EQUATION OF A CIRCLE IN STANDARD FORM WORKSHEET

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Question 1 :

Write the equation of a circle in standard form whose center is (3, 2) and radius is 6.

Question 2 :

Write the equation of a circle in standard form whose center is (0, -3) and radius is 7.

Question 3 :

If two end points of the diameter of a circle are (-1, -2) and (11, 14), find the equation of the circle in standard form. 

Question 4 :

Write the following general form of equation of the circle in standard form. And find the center and radius. 

x2 + y- 4x + 6y - 12  =  0

Question 5 :

The point (1 ,2) is on a circle whose center is (5, -1).  Write the equation of the circle in standard equation. 

Question 6 :

Find the equation of the circle shown below in standard form.

Answers

1. Answer :

Equation of a circle in standard form :

(x - h)2 + (y - k)2  =  r2

Substitute (h, k) = (3, 2) and r = 6.

(x - 3)2 + (y - 2)2  =  62

(x - 3)2 + (y - 2)2  =  36

2. Answer :

Equation of a circle in standard form :

(x - h)2 + (y - k)2  =  r2

Substitute (h, k) = (0, -3) and r = 7.

(x - 0)2 + [y - (-3)2]  =  72

x2 + (y + 3)2  =  72

3. Answer :

Using mid point formula, find the mid point of the diameter.  

Mid point of (-1, -2) and (11, 14) : 

=  [(-1 + 11)/2, (-2 + 14)/2]

=  (10/2, 12/2)

=  (5, 6)

Mid point of the diameter is the center of the circle. 

So, the center of the circle is (5, 6). 

Using distance formula to find the distance between the center and one of the end points of the diameter.

Distance between (5, 6) and (11, 14) :

=  √[(11 - 5)2 + (14 - 6)2]

=  √[62 + 82]

=  √[36 + 64]

=  √100

=  10

Radius of the circle is 10 units. 

Equation of the circle in standard form : 

(x - h)2 + (y - k)2  =  r2

Substitute (h, k) = (5, 6) and r = 10.

(x - 5)2 + (y - 6)2  =  102

4. Answer :

x2 + y- 4x + 6y - 12  =  0

Write x-terms and y-terms together. 

x2 - 4x + y2 + 6y - 12  =  0

Completing the square. 

x2 - 2(x)(2) + 22 - 2+ y2 + 2(y)(3) + 3232 - 12  =  0

(x - 2)2 - 2+ (y + 3)32 - 12  =  0

(x - 2)2 - 4 + (y + 3)- 9 - 12  =  0

(x - 2)+ (y + 3)25  =  0

Add 25 to each side.

(x - 2)+ (y + 3)2  =  25

(x - 2)+ (y + 3)2  =  52

The above equation of the circle is in standard form.  

Center (h, k)  =  (2, -3)

Radius  =  5

5. Answer :

To find the standard equation of the circle, we need to know the center and radius. The center is already given and we need to find the radius.

Using distance formula, we have

Radius  =  √[(5 - 1)2 + (-1 - 2)2]

Radius  =  √[42 + (-3)2]

Radius  =  √[16 + 9]

Radius  =  √25

Radius  =  5

Equation of a circle in standard form : 

(x - h)2 + (y - k)2  =  r2

Substitute (h, k) = (5, -1) and r = 5.

(x - 5)2 + [y - (-1)2]  =  52

Simplify. 

(x - 5)2 + (y + 1)2  =  52

6. Answer :

In the given circle, measure the length of the radius.

The circle above has the center (5, 2) and radius 4 units.

Equation of the circle in standard form :

(x - h)2 + (y - k)2 = r2

Substitute (h, k) = (5, 2) and r = 4.

(x - 5)2 + (y - 2)2 = 42

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact Us  |  Privacy Policy

©All rights reserved. onlinemath4all.com

onlinemath4all_official_badge1.png

Recent Articles

  1. AP Precalculus Problems and Solutions

    Feb 05, 26 06:41 AM

    precalculus.png
    AP Precalculus Problems and Solutions

    Read More

  2. SAT Math Preparation with Hard Questions

    Feb 05, 26 05:30 AM

    SAT Math Preparation with Hard Questions

    Read More

  3. 10 Tricky SAT Math Questions with Answers

    Feb 04, 26 07:08 PM

    10 Tricky SAT Math Questions with Answers

    Read More