DIVISION PROPERTIES OF EXPONENTS

Quotient of Powers Property

Words :

The quotient of two non zero powers with the same base equals the base raised to the difference of the exponents. 

Numbers :

37 ÷ 35  =  37 - 5  =  32

Algebra :

If x is any nonzero real number and m and n are integers, then

xm ÷ xn  =  xm - n

Finding Quotient of Powers

Example 1 :

Simplify : 

38/32

Solution :

=  38/32

Use the Quotient of Powers Property. 

=  38 - 2

=  36

=  729

Example 2 :

Simplify : 

y3/y3

Solution :

=  y3/y3

Use the Quotient of Powers Property. 

=  y3 - 3

=  y0

=  1

Example 3 :

Simplify : 

x5y9/(xy)4

Solution :

=  x5y9/(xy)4

Use the Power of a Product Property. 

=  x5y9/x4y4

Use the Quotient of Powers Property. 

=  x5-4 ⋅ y9-4

=  x⋅ y5

=  xy5

Example 4 :

Simplify : 

(4⋅ 5⋅ 67)/(4 ⋅ 5⋅ 65)

Solution :

=  (4⋅ 5⋅ 67)/(4 ⋅ 5⋅ 65)

Use the Quotient of Powers Property. 

=  43-1 ⋅ 52-4 ⋅ 67-5

=  4⋅ 5-2 ⋅ 62

=  (4⋅ 62)/52

=  (16 ⋅ 36)/25

=  576/25

Dividing Numbers in Scientific Notation

Example 5 :

Simplify (4 x 109÷ (16 x 106) and write the answer in scientific notation.  

Solution :

=  (4 x 109÷ (16 x 106)

=  (4 x 109)/(16 x 106)

Write as a product of quotients. 

=  (4/16) x (109/106)

Simplify each quotient. 

=  0.25 x 109 - 6

=  0.25 x 103

Write 0.25 in scientific notation as 2.5 x 10-1

=  2.5 x 10-1103

The second two terms have the same base, so add the exponents.  

=  2.5 x 10-1 + 3

=  2.5 x 102

Positive Power of a Quotient Property

Words :

A quotient raised to a positive power equals the quotient of each base raised to that power. 

Numbers :

(5/7)2  =  52/72  =  25/49

Algebra :

If x and y are any nonzero real numbers and m is a positive integer, then

(x/y)m  =  xm/ym

Finding Positive Powers of Quotients

Example 6 :

Simplify : 

(2/5)3

Solution :

=  (2/5)3

Use the Power of a Quotient Property. 

=  23/53

=  8/125

Example 7 :

Simplify : 

(2a3/bc)3

Solution :

=  (2a3/bc)3

Use the Power of a Quotient Property. 

=  (2a3)3/(bc)3

Use the Power of a Power Property. 

=  23(a3)3/(b3c3)

=  8a9/b3c3

Negative Power of a Quotient Property

Words :

A quotient raised to a negative power equals the reciprocal of the quotient raised to the opposite (positive) power. 

Numbers :

(3/2)-2  =  (2/3)2  =  22/32  =  4/9

Algebra :

If x and y are any nonzero real numbers and m is a positive integer, then

(x/y)-m  =  (y/x)m  =  ym/xm

Finding Negative Powers of Quotients

Example 8 :

Simplify : 

(5/4)-3

Solution :

=  (5/4)-3

Rewrite with a positive exponent. 

=  (4/5)3

Use the Power of a Quotient Property. 

=  43/53

=  64/125

Example 9 :

Simplify : 

(3a/b2)-3

Solution :

=  (3a/b2)-3

Rewrite with a positive exponent. 

=  (b2/3a)3

Use the Power of a Quotient Property. 

=  (b2)3/(3a)3

Use the Power of a Power Property. 

=  b6/(33a3)

=  b6/27a3

Example 10 :

Simplify : 

(3/4)-1 ⋅ (2a/3b)-2

Solution :

=  (3/4)-1 ⋅ (2a/3b)-2

Rewrite each fraction with a positive exponent. 

=  (4/3)⋅ (3b/2a)2

Use the Power of a Quotient Property. 

=  (4/3) ⋅ (3b)2/(2a)2

Use the Power of a Power Property. 

=  (4/3) ⋅ (32b2/22a2)

=  (4/3) ⋅ (9b2/4a2)

Simplify. 

=  3b2/a2

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 176)

    Jun 06, 25 07:10 PM

    digitalsatmath229.png
    Digital SAT Math Problems and Solutions (Part - 176)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 179)

    Jun 06, 25 09:14 AM

    digitalsatmath238.png
    Digital SAT Math Problems and Solutions (Part - 179)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 178)

    Jun 05, 25 12:26 PM

    digitalsatmath234.png
    Digital SAT Math Problems and Solutions (Part - 178)

    Read More