WHEN TO USE CHAIN RULE

If

y  =  f(u) and u  =  g(x)

and both dy/du and du/dx exists, then the derivative of the function

y  =  f[g(x)] exists and is given by 

dy/dx  =  (dy/du) ⋅ (du/dx)

Example 1 :

Differentiate log √x

Solution :

Let y  =  log √x

Using chain rule :

y  =  log √x

dy/dx  =  (1/√x)⋅(1/2√x)

dy/dx  =  1/2x  ---(1)

Using substitution  :

y  =  log √x

Let t  =  √x, then y  =  log t

dy/dx  =  (dy/dt)⋅(dt/dx)

dy/dt  =  1/t and dt/dx  =  1/2√x

=  (1/t)⋅(1/2√x)

By replacing t by √x, we get

=  (1/√x)⋅(1/2√x)

dy/dx  =  1/2x  ---(2)

Note :

In both ways, we should get the same answer.

Example 2 :

Differentiate log sin (x2+2x+3)

Solution :

Let y  =  log sin (x2+2x+3)

dy/dx  =  (1/sin (x2+2x+3)) cos (x2+2x+3)(2x+2)

  =  2(x+1)cos (x2+2x+3)/sin (x2+2x+3)

dy/dx  =  2(x+1) cot (x2+2x+3)

Example 3 :

Differentiate [e-6t + sin(2-t)]3

Solution :

Let y  =  [e-6t + sin(2-t)]3

dy/dx  =  3[e-6t + sin(2-t)]2[e-6t (-6) + cos(2-t) (-1)]

=  3[e-6t + sin(2-t)]2[-6e-6t - cos(2-t)]

dy/dx  =  -3[e-6t + sin(2-t)]2[6e-6t + cos(2-t)]

Example 4 :

Differentiate ((ln(x2+1) + tan-1(6x))10

Solution :

Let y  =  ((ln(x2+1) + tan-1(6x))10

Example 5 :

Differentiate √(5x+ tan(4x))

Solution :

Let y  =  √(5x+ tan(4x))

dy/dx  =  [1/2√(5x+ tan(4x))] [5+sec2(4x) 4]

dy/dx  =  [1/2√(5x+ tan(4x))] [5+4sec2(4x)]

Example 6 :

Differentiate cos(x2ex)

Solution :

y  =  cos(x2ex)

dy/dx  =  -sin(x2ex) [x2 ex + ex 2x]

dy/dx  =  -xex(x + 2)sin(x2ex

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 199)

    Jul 02, 25 07:06 AM

    digitalsatmath268.png
    Digital SAT Math Problems and Solutions (Part - 199)

    Read More

  2. Logarithm Questions and Answers Class 11

    Jul 01, 25 10:27 AM

    Logarithm Questions and Answers Class 11

    Read More

  3. Digital SAT Math Problems and Solutions (Part -198)

    Jul 01, 25 07:31 AM

    digitalsatmath267.png
    Digital SAT Math Problems and Solutions (Part -198)

    Read More