WRITING EQUIVALENT POLAR COORDINATES

Writing Equivalent Polar Coordinates :

Let P have a polar coordinates (r, θ). Any other polar coordinate P must be in the following form.

(r, θ + 2nπ)  or (-r, θ + π)

Where n is any integer. In particular, the pole has polar coordinates (0, θ), where θ is any angle.

Example 1 :

Sketch (5, 3π/4) and identify 3 other polar coordinates on the interval (-2π, 2π) that represent the same point.

Solution :

First let us plot the point (5, 3π/4) in the polar grid.

From this position, we can move either clock wise or anti clock wise.

r > 0, θ  =  360 - 135  ==>  225  ==> 5π/4

The another point is (5, 5π/4).

Rotating the ray anticlock wise 135 is equal to rotating the same ray 

If r < 0, then θ  =  π + 3π/4 ==>  7π/4

The point on the terminal side is (-5, 7π/4). So the three remaining points which are equivalent to the given points are  (5, 5π/4), (-5, 7π/4) and 

Example 2 :

Find all polar coordinates of the point (4, 4√3) that describes this point given that 0 <  θ < 2π

Solution :

x  =  4 and y  =  4√3

r cosθ  =  4 and r sin θ  =  4√3

x2 + y2  =  r2

42 + (4√3)2  =  r2

r=  16 + 16(3)

r=  64

r  =  ± 8

If r  =  8 > 0, then θ  =  cos-1(4/8)

θ  =  cos-1(1/2)

θ  =  π/3

(8, π/3) and (8, 5π/3).

If r  =  -8 < 0, then θ  =  cos-1(-4/8)

θ  =  cos-1(-1/2)

So,

θ  =  2π/3

(-8, 2π/3) and (8, 4π/3).

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 213)

    Jul 13, 25 09:51 AM

    digitalsatmath292.png
    Digital SAT Math Problems and Solutions (Part - 213)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 212)

    Jul 13, 25 09:32 AM

    digitalsatmath290.png
    Digital SAT Math Problems and Solutions (Part - 212)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 211)

    Jul 11, 25 08:34 AM

    digitalsatmath289.png
    Digital SAT Math Problems and Solutions (Part - 211)

    Read More