WRITE THE FIRST FIVE TERMS OF THE SEQUENCE

Write down the first five terms of the sequence given by :

Example 1  :

un  =  2n - 1

Solution  :

We need to find the first five terms

That is, u1, u2, u3, u4, u5

 un  =  2n – 1

When n  =  1

u1  =  2(1) - 1

u1  =  2 - 1

u1  =  1

When n  =  2

u2  =  2(2) - 1

u2  =  4 - 1

u2  =  3

When n  =  3

u3  =  2(3) - 1

u3  =  6 - 1

u3  =  5

When n  =  4

u4  =  2(4) - 1

u4  =  8 - 1

u4  =  7

When n  =  5

u5  =  2(5) - 1

u5  =  10 - 1

u5  =  9

Hence, the first five terms are 1, 3, 5, 7, 9,…… 

Example 2  :

un  =  2n + 5

Solution :

We need to find the first five terms

That is, u1, u2, u3, u4, u5

un  =  2n + 5

When n  =  1

u1  =  2(1) + 5

u1  =  2 + 5

u1  =  7

When n  =  2

u2  =  2(2) + 5

u2  =  4 + 5

u2  =  9

When n  =  3

u3  =  2(3) + 5

u3  =  6 + 5

u3  =  11

When n  =  4

u4  =  2(4) + 5

u4  =  8 + 5

u4  =  13

When n  =  5

u5  =  2(5) + 5

u5  =  10 + 5

u5  =  15

Hence, the first five terms are 7, 9, 11, 13, 15,……

Example 3  :

un  =  5n + 1

Solution  :

We need to find the first five terms

That is, u1, u2, u3, u4, u5

 un  =  5n + 1

When n  =  1

u1  =  5(1) + 1

u1  =  5 + 1

u1  =  6

When n  =  2

u2  =  5(2) + 1

u2  =  10 + 1

u2  =  11

When n  =  3

u3  =  5(3) + 1

u3  =  15 + 1

u3  =  16

When n  =  4

u4  =  5(4) + 1

u4  =  20 + 1

u4  =  21

When n  =  5

u5  =  5(5) + 1

u5  =  25 + 1

u5  =  26

Hence, the first five terms are 6, 11, 16, 21, 26,…… 

Example 4  :

un  =  7n + 2

Solution  :

We need to find the first five terms

That is, u1, u2, u3, u4, u5

un  =  7n + 2

When n  =  1

u1  =  7(1) + 2

u1  =  7 + 2

u1  =  9

When n  =  2

u2  =  7(2) + 2

u2  =  14 + 2

u2  =  16

When n  =  3

u3  =  7(3) + 2

u3  =  21 + 2

u3  =  23

When n  =  4

u4  =  7(4) + 2

u4  =  28 + 2

u4  =  30

When n  =  5

u5  =  7(5) + 2

u5  =  35 + 2

u5  =  37

Hence, the first five terms are 9, 16, 23, 30, 37,…… 

Example 5  :

un  =  - 2n + 5

Solution  :

We need to find the first five terms

That is, u1, u2, u3, u4, u5

un  =  - 2n + 5

When n  =  1

u1  =  - 2(1) + 5

u1  =  - 2 + 5

u1  =  3

When n  =  2

u2  =  - 2(2) + 5

u2  =  - 4 + 5

u2  =  1

When n  =  3

u3  =  - 2(3) + 5

u3  =  - 6 + 5

u3  =  - 1

When n  =  4

u4  =  - 2(4) + 5

u4  =  - 8 + 5

u4  =  - 3

When n  =  5

u5  =  -2(5) + 5

u5  =  - 10 + 5

u5  =  - 5

Hence, the first five terms are 3, 1, - 1, - 3, - 5,……

Example 6  :

un  =  - 3n + 4

Solution  :

We need to find the first five terms

That is, u1, u2, u3, u4, u5

un  =  - 3n + 4

When n  =  1

u1  =  - 3(1) + 4

u1  =  - 3 + 4

u1  =  1

When n  =  2

u2  =  - 3(2) + 4

u2  =  - 6 + 4

u2  =  - 2

When n  =  3

u3  =  - 3(3) + 4

u3  =  - 9 + 4

u3  =  - 5

When n  =  4

u4  =  - 3(4) + 4

u4  =  - 12 + 4

u4  =  - 8

When n  =  5

u5  =  - 3(5) + 4

u5  =  - 15 + 4

u5  =  - 11

Hence, the first five terms are 1, - 2, - 5, - 8, - 11,……

Example 7 :

A sequence has first term 20 and the difference between the terms is always 31.

a) Determine a formula to generate the terms of the sequence

b)  Calculate the first 5 terms of the sequence.

Solution :

i)  First term (a) = 21

Difference between the terms

= common difference (d) = 31

tn = a + (n - 1) d

tn = 21 + (n - 1) (31)

= 21 + 31n - 31

= -10 + 31n

So, the required formula is 31n - 10

ii)  When n = 5

t= -10 + 31(5)

= -10 + 155

= 145

First five terms are 

21, 52, 83, 114, 145

Example 8 :

The second and third terms of the sequence are 16 and 27. The difference between successive terms in the sequence is always constant.

a)  Determine the general formula of the sequence.

b)  Calculate the first 5 terms of the sequence.

Solution :

a) Second term = 16

third term = 27

a + d = 16 ------(1)

a + 2d = 27 -----(2)

(1) - (2)

d - 2d = 16 - 27

-d = -11

d = 11

Applying the value of d in (1), we get

a + 11 = 16

a = 16 - 11

a = 5

General formula :

tn = a + (n - 1) d

tn = 5 + (n - 1)11

= 5 + 11n - 11

tn = -6 + 11n

b) When n = 1

t1 = -6 + 11(1) ==> 5

When n = 2

t2 = -6 + 11(2) ==> 16

When n = 3

t3 = -6 + 11(3) ==> 27

When n = 4

t4 = -6 + 11(4) ==> 38

When n = 5

t5 = -6 + 11(5) ==> 49

So, the first 5 terms are 5, 16, 27, 38, 49

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 213)

    Jul 13, 25 09:51 AM

    digitalsatmath292.png
    Digital SAT Math Problems and Solutions (Part - 213)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 212)

    Jul 13, 25 09:32 AM

    digitalsatmath290.png
    Digital SAT Math Problems and Solutions (Part - 212)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 211)

    Jul 11, 25 08:34 AM

    digitalsatmath289.png
    Digital SAT Math Problems and Solutions (Part - 211)

    Read More