What is complex number ?
A complex number is the sum of a real number and an imaginary number.
Standard form :
z = a + ib
Its represented by ‘z’.
Example 1 :
3(cos 30˚ - i sin 30˚)
Solution :
Given, z = 3(cos 30˚ - i sin 30˚)
By using the calculator, we get
z = 3[√3/2 - i(1/2)]
z = 3√3/2 - 3/2i
So, the standard form is 3√3/2 - 3/2i.
Example 2 :
8(cos 210˚ + i sin 210˚)
Solution :
Given, z = 8(cos 210˚ + i sin 210˚)
By using the calculator, we get
z = 8[-√3/2 + i(-1/2)]
z = (-8√3/2) - (8/2i)
z = -4√3 - 4i
So, the standard form is -4√3 - 4i.
Example 3 :
5[cos (-60˚) + i sin (-60˚)]
Solution :
Given, z = 5[cos (-60˚) + i sin (-60˚)]
By using the calculator, we get
z = 5[1/2 + i(-√3/2)]
z = (5/2) - (5√3/2)i
So, the standard form is 5/2 - (5/2)√3i.
Example 4 :
5(cos π/4 + i sin π/4)
Solution :
Given, z = 5(cos π/4 + i sin π/4)
By using the calculator, we get
z = 5[√2/2 + i(√2/2)]
z = (5/2)√2 + (5/2)√2i
So, the standard form is (5/2)√2 + (5/2)√2i.
Example 5 :
√2(cos 7π/6 + i sin 7π/6)
Solution :
Given, z = √2(cos 7π/6 + i sin 7π/6)
By using the calculator, we get
z = √2[-√3/2 + i(-1/2)]
z = -√6/2 - √2/2i
So, the standard form is -√6/2 - √2/2i.
Example 6 :
√7(cos π/12 + i sin π/12)
Solution :
Given, z = √7(cos π/12 + i sin π/12)
By using the calculator, we get
z = √7[((√6 + √2)/4) + i((√6 - √2)/4)]
z = √7[(√6 + √2)/4] + √7[(√6 - √2)/4]i
So, the standard form is
√7[(√6 + √2)/4] + √7[(√6 - √2)/4]i
Write your answer in rectangular form when rectangular form is given and in polar form when polar form is given.
Example 7 :
(4 + 4i) (5 - 3i)
Solution :
(4 + 4i) (5 - 3i)
Using distributive property,
= 4(5) + 4(-3i) + 4i (5) + 4i(-3i)
= 20 - 12i + 20i - 12i2
= 20 + 8i - 12(-1)
= 20 + 8i + 12
= 32 + 8i
Example 8 :
(6 - 2i) / (2 + 4i)
Solution :
(6 - 2i) / (2 + 4i)
= [(6 - 2i) / (2 + 4i)] [(2 - 4i)/(2 - 4i)]
= (6 - 2i)(2 - 4i) / (2 + 4i)/ (2 - 4i)
= (12 - 24i - 4i + 8i2) / (22 - (4i)2)
= (12 - 28i - 8) / (4 + 16)
= (4 - 28i) / 20
= 4/20 - (28i/20)
= 1/5 - 7i/5
Example 9 :
(-1 - 6i)3
Solution :
(-1 - 6i)3
Looks like (a - b)3, then a3 - 3a2b + 3ab2 - b3
= (-1)3 - 3(-1)26i + 3(-1)(6i)2 - (-6i)3
= -1 + 3(6i) - 3(36i2) - (-216i3)
i2 = -1 and i3 = -i
= -1 + 18i - 108(-1) + 216(-i)
= -1 + 18i + 108 - 216i
= 107 - 198i
Example 10 :
[2 (cos7π/6 + i sin 7π/6)]3
Solution :
= [2 (cos7π/6 + i sin 7π/6)]3
Distributing the power, we get
= 23 (cos 7π/6 + i sin 7π/6)3
= 8 [cos (3 x 7π/6) + i sin (3 x 7π/6)]
= 8 [cos (7π/2) + i sin (7π/2)]
Write the expression as a complex number in standard form.
Example 11 :
(3 + 4i ) − (7 − 5i ) + 2i(9 + 12i )
Solution :
= (3 + 4i) − (7 − 5i) + 2i(9 + 12i)
= 3 + 4i - 7 + 5i + 18i + 24i2
= -4 + 9i + 18i + 24(-1)
= -4 - 24 + 27i
= -28 + 27i
Example 12 :
3i(2 + 5i) + (6 − 7i) − (9 + i)
Solution :
= 3i(2 + 5i) + (6 − 7i) − (9 + i)
Using distributive property, we get
= 6i + 15i2 + 6 - 7i - 9 - i
= 6i - 7i - i + 15(-1) + 6 - 9
= 6i - 8i - 15 + 6 - 9
= -2i - 24 + 6
= -2i - 18
Example 13 :
(3 + 5i)(2 − 7i4)
Solution :
= (3 + 5i)(2 − 7i4)
Using distributive property, we get
= 3(2) + 3(−7i4) + 5i(2) + 5i (−7i4)
i4 = (i2)2
= (-1)2
i4 = 1
= 3(2) + 3(−7) + 5i(2) + 5i (−7)
= 6 - 21 + 10i - 35i
= -15 - 25i
Example 14 :
(2 + 4i5) + (1 − 9i6) − ( 3 + i7)
Solution :
= (2 + 4i5) + (1 − 9i6) − ( 3 + i7)
i5 = i4 i = i |
i6 = i4 i2 = 1(-1) = -1 |
i7 = i4 i3 = 1(-i) = -i |
= (2 + 4i) + (1 + 9) − (3 - i)
= (2 + 4i) + 10 − (3 - i)
= 2 + 4i + 10 - 3 + i
= 12 - 3 + 4i + i
= 9 + 5i
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
May 19, 25 01:06 PM
May 18, 25 07:46 AM
May 17, 25 07:24 AM