WRITE AN EQUATION OF THE CIRCLE WITH CENTER AND RADIUS

Standard form equation of a circle :

(x - h)2 + (y - k)2  =  r2

Here (h, k) stands for center of the circle and "r" stands for radius.

If the center of the circle is at origin, the equation will become

 x 2 + y 2  =  r2

Problem 1 :

Find the standard form equation for the circle.

(i)  Center (1, 2) and radius 5.

(ii)  Center (-3, 2) and radius 1.

(iii)  Center (-1, -4) and radius 3.

(iv)  Center (0, 0) and radius √3.

Solution :

(i)  Center (1, 2) and radius 5.

Equation of the circle :

(x - h)2 + (y - k)2 = r2

(x - 1)2 + (y - 2)2 = 52

(x-1)2 + (y - 2)2 = 25

(x - 1)= x- 2x + 1 and (y - 2)2 = y- 4y + 4

x- 2x + 1 + y- 4y + 4 = 25

x+ y- 2x - 4y + 5 - 25 = 0

x+ y- 2x - 4y - 20 = 0

So, the required equation of the circle is

x2+y2-2x-4y-20  =  0

(ii)  Center (-3, 2) and radius 1.

Solution :

Here h = -3 and k = 2

Equation of the circle :

(x - h )2 + (y -  k)2 = r2

(x +  3)2 + (y -  2)2 = 12

(x + 3)= x+ 6x + 9 and (y -  2)2 = y2  - 4y + 4

x+ 6x + 9 + y2- 4y + 4 = 1

x+ y+ 6x - 4y + 9 + 4 - 1 = 0

x+ y+ 6x - 4y + 12 = 0

So, the required equation of the circle is

x+ y+ 6x - 4y + 12 = 0

(iii)  Center (-1, -4) and radius 3.

Solution :

(x - h)2 + (y - k)2 = r2

(x + 1)2 + (y + 4)2 = 32

(x + 1)= x+ 2x + 1 and (y + 4)2 = y+ 8y + 16

x+ 2x + 1 + y+ 8y + 16 = 9

x+ y+ 2x + 8y + 17 - 9 = 0

x+ y+ 2x + 8y + 8 = 0

So, the required equation of the circle is

x+ y+ 2x + 8y + 8 = 0

(iv)  Center (0, 0) and radius √3.

Solution :

(x - h)2 + (y - k)2 = r2

(x - 0)2 + (y - 0)2 = √32

x2 + y2 = 3

So, the required equation of the circle is

x2 + y2 = 3

Problem 2 :

A circle is graphed in the xy-plane. If the circle has a radius of 3 and the center of the circle is at (4, −2), which of the following could be an equation of the circle?

A) (x + 4)2 + (y − 2)2 = 3         B) (x + 4)2 − (y − 2)2 = 3

C) (x − 4)2 + (y + 2)2 = 9          D) (x − 4)2 − (y + 2)2 = 9

Solution :

Center is at (4, -2) and radius = 3

(x - h)2 + (y − k)2 = r2

(x - 4)2 + (y − (-2))2 = 32

(x - 4)2 + (y + 2)2 = 9

So, option C is correct.

Problem 3 :

Which of the following equations is the equation of a circle that is centered at (2, −1) in the xy-plane and  passes through the point (6, −1)?

A) (x − 2)2 + (y + 1)2 = 4      B) (x + 2)2 + (y − 1)2 = 4

C) (x − 2)2 + (y + 1)2 = 16     D) (x + 2)2 + (y − 1)2 = 16

Solution :

To find radius of the circle, we need to find the distance between center and any point on the circle.

= √(x2 - x1)2 + (y2 - y1)2

= √(6 - 2)2 + (-1 + 1)2

= √42 + 02

Radius = 4

r2 = 42 ==> 16

(x - h)2 + (y − k)2 = r2

By applying center (2, −1) and r2 = 16, we get

(x - 2)2 + (y + 1)2 = 16

So, option C is correct.

Problem 4 :

A circle has a radius of 10, and the x-coordinate of the center in the xy-plane is −2. Two points on the circumference of the circle are (6, 9) and (−8, −5). What is the y-coordinate of the center?

A) −3    B) 0     C) 3    D) 8

Solution :

Let the center be (-2, y)

Distance between center and any point on the circumference of the circle is radius.

radius = √(x2 - x1)2 + (y2 - y1)2

10 = √(6 + 2)2 + (9 - y)2

102 = 82 + (9 - y)2

100 - 64 = (9 - y)2

9 - y = √36

9 - y = 6 and 9 - y = -6

9 - 6 = y and 9 + 6 = y

y = 3 and y = 15

So, the required point as center be (-2, 3) and (-2, 15)

10 = √(-8 + 2)2 + (-5 - 3)2

10 = √62 + 82

10 = 10

10 = √(-8 + 2)2 + (-5 - 15)2

10 = √62 + 202

The value of y which is 15 is not satisfying the condition. So, the y-coordinate is 3.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 213)

    Jul 13, 25 09:51 AM

    digitalsatmath292.png
    Digital SAT Math Problems and Solutions (Part - 213)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 212)

    Jul 13, 25 09:32 AM

    digitalsatmath290.png
    Digital SAT Math Problems and Solutions (Part - 212)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 211)

    Jul 11, 25 08:34 AM

    digitalsatmath289.png
    Digital SAT Math Problems and Solutions (Part - 211)

    Read More