## WORKSHEET ON SUBSETS

Question 1 :

Fill in the blanks with ⊆ or ⊈ to make each statement true.

(i)  {3} --- {0, 2, 4, 6}

(ii)  {a} ----- {a, b, c}

(iii)  {8, 18} ---- {18, 8}

(iv)  {d} ---- {a, b, c}

Question 2 :

Let X= {-3, -2,-1, 0, 1, 2}  and Y = {x: x is an integer and -3 ≤ x < 2}

(i) Is X a subset of Y ?

(ii) Is Y a subset of  X ?

Question 3 :

Examine whether

A  =  {x: x is a positive integer divisible by 3}

is a subset of

B  =  {x: x is a multiple of 5, x∈ℕ}

Question 4 :

Write down the power sets of the following sets.

(i) A  =  {x, y}

(ii) X  =  {a, b, c}

(iii) B  =  {5, 6, 7, 8}

(iv)   C  =  ∅

Question 5 :

Find the number of subsets and the number of proper subsets of the following sets.

(i)  A = { 13, 14, 15, 16, 17, 18}

(ii)  B  =  {a, b, c, d, e, f, g}

(iii)  C = { x: x∈W, x∉ℕ}

Question 6 :

(i) If A= ∅, find n[P(A)]

(ii)  If n(A)  =  3 find n[P(A)].

(iii) If n[P(A)]  =  512, find n(A) ?

(iv) If n[P(A)]  =  1024, find n(A)?

Question 7 :

If n[P(A)]  =  1, what can you say about the set A?

Question 8 :

Let  A  =  {x: x is a natural number <11}

B  =  {x: x is an even number 1 < x < 21}

C  =  {x: x is an integer and 15 ≤ x ≤ 25}

(i) List the elements of A, B, C.

(ii) Find n(A), n(B) and n(C).

(iii) State whether the following are True(T) or False (F)

(1)  Solution :

(i)  {3} ⊈ {0, 2, 4, 6}

(ii)  {a} ⊆ {a, b, c}

(iii)  {8, 18} ⊆ {18, 8}

(iv)   {d} ⊈ {a, b, c}

(2) Solution :

(i)  X is not a subset of Y

(ii)  Yes, Y is a subset of X.

(3)  Solution :

Let us list out the elements in both sets.

A  =  {3, 6, 9, 12, 15, ...........}

B  =  {5, 10, 15, 20, .............}

Every element of set A is not a elements of set B. So, A is not a subset of B.

(4)  Solution :

(i)  P(A)  =  { ∅, {x}, {y}, {x, y}}

(ii)  P(X)  =  { {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}

(iii)  P(B)  =  { {5}, {6}, {7}, {8}, {5, 6}, {5, 7}, {5, 8}, {6, 7}, {6, 8},{7,8}, {5, 6, 7}, {5, 6, 8}, {5, 7, 8}, {6, 7, 8}, {5, 6, 7, 8}}

(iv)  ∅ has no proper subset.

(5)  Solution :

The number of elements in A is 6.

The number of subsets :

n[P(A)]  =  2n

n[P(A)]  =  26

n[P(A)]  = 64

The number of proper subsets :

=  2n-1

=  64-1

=  63

So, number of subsets  =  64 and number of proper subsets  =  63.

(ii)   B  =  {a, b, c, d, e, f, g}

n(B)  =  7

Number of subsets :

n[P(B)]  =  2

n[P(B)]  =  128

Number of proper subsets :

=  27-1

=  128-1

=  127

So, number of subsets  =  128 and number of proper subsets  =  127.

(iii)  C = { x: x∈W, x∉ℕ}

n(C)  =  1

Number of subsets :

n[P(C)]  =  21

n[P(C)]  =  2

Number of proper subsets :

=  21-1

=  2-1

=  1

So, number of subsets  =  2 and number of proper subsets  =  1.

(6)  Solution :

(i)  n[P(A)]  =  1 as ∅ itself a subset of ∅.

(ii)  n[P(A)] = 23 = 8

(iii)  n[P(A)]  =  512 = 2ⁿ

512 = 29

n  =  9

n(A) = 9

(iv) If n[P(A)]  =  1024, find n(A)?

n[P(A)]  =  1024  =  2ⁿ

1024  =  2ⁿ

210  =  2ⁿ

n  =  10

n(A) = 10

(7)  Solution :

A is the empty set.

(8)  Solution :

Let  A  =  {x: x is a natural number <11}

B  =  {x: x is an even number 1 < x < 21}

C  =  {x: x is an integer and 15 ≤ x ≤ 25}

(i) List the elements of A, B, C.

A = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

B  =  {2, 4, 6, 8, 10, 12, 14, 16, 18, 20}

C  =  {15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25}

(ii) Find n(A), n(B) and n(C).

n(A)  =  10

n(B)  =  10

n(C)  =  11

(iii) State whether the following are True(T) or False (F)

(a)  7 ∈ B  - F

(b)  16 ∉ A -T

(c)  {15, 20, 25} ⊂ C - T

(d)  {10, 12} ⊂ B - T

Apart from the stuff given above, if you need any other stuff in math, please use our google custom search here.

If you have any feedback about our math content, please mail us :

v4formath@gmail.com

You can also visit the following web pages on different stuff in math.

WORD PROBLEMS

Word problems on simple equations

Word problems on linear equations

Algebra word problems

Word problems on trains

Area and perimeter word problems

Word problems on direct variation and inverse variation

Word problems on unit price

Word problems on unit rate

Word problems on comparing rates

Converting customary units word problems

Converting metric units word problems

Word problems on simple interest

Word problems on compound interest

Word problems on types of angles

Complementary and supplementary angles word problems

Double facts word problems

Trigonometry word problems

Percentage word problems

Profit and loss word problems

Markup and markdown word problems

Decimal word problems

Word problems on fractions

Word problems on mixed fractrions

One step equation word problems

Linear inequalities word problems

Ratio and proportion word problems

Time and work word problems

Word problems on sets and venn diagrams

Word problems on ages

Pythagorean theorem word problems

Percent of a number word problems

Word problems on constant speed

Word problems on average speed

Word problems on sum of the angles of a triangle is 180 degree

OTHER TOPICS

Profit and loss shortcuts

Percentage shortcuts

Times table shortcuts

Time, speed and distance shortcuts

Ratio and proportion shortcuts

Domain and range of rational functions

Domain and range of rational functions with holes

Graphing rational functions

Graphing rational functions with holes

Converting repeating decimals in to fractions

Decimal representation of rational numbers

Finding square root using long division

L.C.M method to solve time and work problems

Translating the word problems in to algebraic expressions

Remainder when 2 power 256 is divided by 17

Remainder when 17 power 23 is divided by 16

Sum of all three digit numbers divisible by 6

Sum of all three digit numbers divisible by 7

Sum of all three digit numbers divisible by 8

Sum of all three digit numbers formed using 1, 3, 4

Sum of all three four digit numbers formed with non zero digits

Sum of all three four digit numbers formed using 0, 1, 2, 3

Sum of all three four digit numbers formed using 1, 2, 5, 6