Problem 1 :
Martin is four times as old as his brother Luther at present. After 10 years he will be twice the age of his brother. Find their present ages.
Solution :
Let 'x' and 'y' be the present ages of Martin and Luther respectively.
Given : Martin is four times as old as his brother Luther at present.
Then,
x = 4y ----(1)
Given : After 10 years, Martin will be twice the age of his brother Luther.
Then,
x + 10 = 2(y + 10)
x + 10 = 2y + 20
Subtract 10 from each side.
x = 2y + 10 ----(2)
From (1) and (2),
4y = 2y + 10
Subtract 2y from each side.
2y = 10
Divide each side by 2.
y = 5
Substitute 5 for y in (1).
(1)----> x = 4(5)
x = 20
So, the present ages of martin and Luther are 20 years and 5 years respectively.
Problem 2 :
A father is 30 years older than his son,and one year ago he was four times as old as his son. Find the present ages of his father and his son.
Solution :
Let 'x' and 'y' be the present ages of father and son respectively.
Given : A father is 30 years older than his son
Then,
x = y + 30 ----(1)
Given : One year ago, father was four times as old as his son.
Then,
x - 1 = 4(y - 1)
x - 1 = 4y - 4
Add 1 to each side.
x = 4y - 3 ----(2)
From (1) and (2),
y + 30 = 4y - 3
Subtract y from each side.
30 = 3y - 3
Add 3 to each side.
33 = 3y
Divide each side by 3.
11 = y
Substitute 5 for y in (1).
(1)----> x = 11 + 30
x = 41
So, the present ages of father and son are 41 years and 11 years respectively.
Problem 3 :
The ages of Abraham and Adam are in the ratio 5 : 7. Four years from now, the ratio of their ages will be 3 : 4. Find the present ages of them.
Solution :
Given : The ages of Abraham and Adam are in the ratio
5 : 7
Then,
age of Abraham = 5x
age of Adam = 7x
Four years from now,
age of Abraham = 5x + 4
age of Adam = 7x + 4
Given : Four years from now, the ratio of their ages will be
3 : 4
Then,
(5x + 4) : (7x + 4) = 3 : 4
(5x+4) / (7x+4) = 3 / 4
4(5x + 4) = 3(7x + 4)
20x + 16 = 21x + 12
Subtract 20x from each side.
16 = x + 12
Subtract 12 from each side.
4 = x
Then
5x = 5(4) = 20
7x = 7(4) = 28
So, the present ages of Abraham and Adam are 20 years and 28 years.
Problem 4 :
Airi's mother is four times as old as Airi. After five years her mother will be three times as old as she will be then. Find their present ages.
Solution :
Let 'x' and 'y' be the present ages of Mother and Airi respectively.
Given : Airi's mother is four times a old as Airi.
Then,
x = 4y ----(1)
Given : After five years Airi's mother will be three times as old as Airi will be then.
Then,
x + 5 = 3(y + 5)
x + 5 = 3y + 15
Subtract 5 from each side.
x = 3y + 10 ----(2)
From (1) and (2),
4y = 3y + 10
Subtract 3y from each side.
y = 10
Substitute 10 for y in (1).
(1)----> x = 4(10)
x = 40
So, the present ages of Airi's mother and Airi are 40 years and 10 years respectively.
Problem 5 :
The sum of the present ages of Kiran and Kate is 60 years. If the ratio of their present ages be 7 : 8, find their present age.
Solution :
Let 'x' and 'y' be the present ages of Kiran and Kate respectively.
Given : The ratio of the present ages of Kiran and Kate is
7 : 8
Then,
present age of Kiran = 7x
present age of Kate = 8x
Given : The sum of the present ages of Kiran and Kate is 60 years.
Then,
7x + 8x = 60
15x = 60
Divide each side by 15.
x = 4
Then,
7x = 7(4) = 28
8x = 8(4) = 32
So, the present ages of Kiran and Kate are 28 years and 32 years respectively.
Problem 6 :
Andrea is three times as old as her sister Anu. Three years ago, she was two years less than four times the age of her sister. Find their present ages.
Solution :
Let 'x' and 'y' be the present ages of Andrea and Anu respectively.
Given : Andrea is three times as old as her sister Anu.
x = 3y ----(1)
Given : Three years ago, Andrea was two years less than four times the age of her sister Anu.
Then,
x - 3 = 4(y - 3) - 2
x - 3 = 4y - 12 - 2
x - 3 = 4y - 14
Add 3 to each side.
x = 4y - 11 ----(2)
From (1) and (2),
3y = 4y - 11
Subtract 3y from each side.
0 = y - 11
Add 11 to each side.
11 = y
Substitute 11 for y in (1).
(1)----> x = 3(11)
x = 33
So, the present ages of Andrea and Anu are 33 years and 11 years respectively.
Apart from the stuff given above, if you need any other stuff in math, please use our google custom search here.
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
WORD PROBLEMS
Word problems on simple equations
Word problems on linear equations
Word problems on quadratic equations
Area and perimeter word problems
Word problems on direct variation and inverse variation
Word problems on comparing rates
Converting customary units word problems
Converting metric units word problems
Word problems on simple interest
Word problems on compound interest
Word problems on types of angles
Complementary and supplementary angles word problems
Markup and markdown word problems
Word problems on mixed fractions
One step equation word problems
Linear inequalities word problems
Ratio and proportion word problems
Word problems on sets and Venn diagrams
Pythagorean theorem word problems
Percent of a number word problems
Word problems on constant speed
Word problems on average speed
Word problems on sum of the angles of a triangle is 180 degree
OTHER TOPICS
Time, speed and distance shortcuts
Ratio and proportion shortcuts
Domain and range of rational functions
Domain and range of rational functions with holes
Graphing rational functions with holes
Converting repeating decimals in to fractions
Decimal representation of rational numbers
Finding square root using long division
L.C.M method to solve time and work problems
Translating the word problems in to algebraic expressions
Remainder when 2 power 256 is divided by 17
Remainder when 17 power 23 is divided by 16
Sum of all three digit numbers divisible by 6
Sum of all three digit numbers divisible by 7
Sum of all three digit numbers divisible by 8
Sum of all three digit numbers formed using 1, 3, 4
Sum of all three four digit numbers formed with non zero digits
Sum of all three four digit numbers formed using 0, 1, 2, 3
Sum of all three four digit numbers formed using 1, 2, 5, 6
©All rights reserved. onlinemath4all.com
May 23, 22 01:59 AM
Exponential vs Linear Growth Worksheet
May 23, 22 01:59 AM
Linear vs Exponential Growth - Concept - Examples
May 23, 22 01:34 AM
SAT Math Questions on Exponential vs Linear Growth