WHAT TYPE OF QUADRILATERAL IS FORMED BY CONNECTING THE POINTS

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Examining the Type of Quadrilateral is Formed by Connecting the Points

Example 1 :

Name the type of quadrilateral formed. If any, by the following points and give reasons for your answer:

(4,5) (7,6) (4,3) (1,2)

Solution :

Let the given points as A(4, 5)  B(7, 6)  C(4, 3) and D (1, 2)

Distance between two points = √(x2 - x1)2 + (y2 - y1)2

Length of the side AB :

Here, x1  =  4, y1  =  5, x2  =  7  and  y2  =  6

  =  √(7-4)2 + (6-5)2

  =  √3² + 1²

  =  √9 + 1

  =  √10

Length of the side BC :

Here, x1  =  7, y1  =  6, x2  =  4  and  y2  =  3

  =  √(4-7)² + (3-6)²

  =  √(-3)² + (-3)²

  =  √9 + 9

  =  √18

Length of the side CD :

Here, x1  =  4, y1  =  3, x2  =  1  and  y2  =  2

  =  √(1-4)2 + (2-3)2

  =  √(-3)2 + (-1)2

  =  √9 + 1

  =  √10

Length of the side DA :

Here, x1  =  1, y1  =  2, x2  =  4  and  y2  =  5

  =  √(4-1)2 + (5-2)2

  =  √32 + 32

  =  √9 + 9

  =  √18

AB  =  CD, BC  =  DA. length of opposite sides are equal.

Length of AC :

Here, x1  =  4, y1  =  5, x2  =  4  and  y2  =  3

  =  √(4-4)² + (3-5)²

  =  √0² + (-2)²

  =  √4

  =  2

Length of BD :

Here, x1  =  7, y1  =  6, x2  =  1  and  y2  =  2

  =  √(1-7)2 + (2-6)2

  =  √(-6)2 + (-4)2

  =  √36 + 16

  =  √52

It can be observed that opposite sides of this quadrilateral are of the same length.

Since the diagonals are of different lengths, the given points are the vertices of the parallelogram.

Example 2 :

Find the points on the x-axis which is equidistant from (2, -5) and (-2, 9)

Solution :

We have to find the point on x-axis. So its y-coordinate will be 0.

Let the point on x axis be (x, 0)

Distance between (x, 0) and (2, -5) =  
Distance between (x, 0) and (-2, 9)

Distance between two points

= √(x2 - x1)2 + (y2 - y1)2

Here, x1  =  x, y =  0, x2  =  2  and  y2  =  -5

                 = √(2 - x)2 + (5 - 0)2

                 = √(2 - x)2 + 25     ---------------(1)

Here, x1  =  x, y =  0, x2  =  -2  and  y2  =  9

  =  √(-2-x)2 + (9-0)2

  =  √(2+x)2 + 92

  =  (2+x)2 + 81

√(2 - x)2 + 25 (2 + x)2 + 81

Taking squares on both sides, we get

 4 + x2 - 4 x + 25 = 4 + x2 + 4 x + 81

 x² - x² - 4 x - 4 x + 4 - 4 = 81 - 25

-8 x = 56

x = -7

So, the required point is (-7, 0)

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact  US  |  Privacy Policy

©All rights reserved. onlinemath4all.com

Recent Articles

  1. 10 Hard SAT Math Questions (Part - 39)

    Dec 11, 25 05:59 PM

    10 Hard SAT Math Questions (Part - 39)

    Read More

  2. 10 Hard SAT Math Questions (Part - 38)

    Dec 08, 25 12:12 AM

    digitalsatmath416.png
    10 Hard SAT Math Questions (Part - 38)

    Read More

  3. SAT Math Practice

    Dec 05, 25 04:04 AM

    satmathquestions1.png
    SAT Math Practice - Different Topics - Concept - Formulas - Example problems with step by step explanation

    Read More