Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.
Let A = {(x, y) a < x < b, c < y < d} ∈ ℝ2, F : A-> ℝ, we say that F is a homogeneous function on A, if there exists a constant P such that F(λx, λy) = λp f(x, y) for all λ∈ℝ such that (λx, λy)∈A. This constant is called degree of F.
Step 1 :
In the given function, apply x = λx and y = λy.
Step 2 :
Do the possible simplification.
Step 3 :
Get the function in the form of λp f(x).
P is the degree of the polynomial.
Then,
x(∂F/∂x) (x, y) + y(∂F/∂y) (x, y) = pF(x, y)
Problem 1 :
Prove that
f (x, y) = x3 − 2x2y +3xy2 + y3
is homogeneous; what is the degree? Verify Euler’s Theorem for f .
Solution :
f (x, y) = x3 − 2x2y +3xy2 + y3
Apply x = λx and y = λy
f (λx, λy) = (λx)3 − 2(λx)2(λy) +3(λx)(λy)2 + (λy)3
f (λx, λy) = λ3x3 − 2λ3(x2y) +3λ3xy2 + λ3y3
f (λx, λy) = λ3(x3 − 2x2y +3xy2 + y3)
So it is not a homogeneous function of degree 3.
Given : x3 − 2x2y +3xy2 + y3
∂F/∂x = 3x2-2(2x)y+3(1)y2+0
∂F/∂x = 3x2-4xy+3y2
x(∂F/∂x) = x(3x2-4xy+3y2) ---(1)
Given : x3 − 2x2y +3xy2 + y3
∂F/∂y = 0-2x2(1)+3x(2y)+3y2
∂F/∂y = -2x2+6xy+3y2
y(∂F/∂y) = y(-2x2+6xy+3y2) ---(2)
(1) + (2)
x(∂F/∂x) + y(∂F/∂y) = x(3x2-4xy+3y2)+y(-2x2+6xy+3y2)
= 3x3-4x2y+3xy2-2x2y+6xy2+3y3
= 3x3-6x2y+9xy2+3y3
= 3(x3-2x2y+3xy2+y3)
= P F(x, y)
Hence it is proved.
Problem 2 :
Prove that
g(x, y) = x log (y/x)
is homogenous, what is the degree ? Verify Euler's theorem for g.
Solution :
g(x, y) = x log (y/x)
Applying x = λx and y = λy
g(λx, λy) = λx log (λy/λx)
g(λx, λy) = λx log (y/x)
It is a homogenous function of degree 1.
∂F/∂x = x (x/y)(-yx-2) + log(y/x)(1)
∂F/∂x = x (x/y)(-y/x2) + log(y/x)
∂F/∂x = -1 + log (y/x) -----(1)
∂F/∂y = x (x/y)(1/x)
∂F/∂y = (x/y) -----(2)
(1) + (2)
x(∂F/∂x) + y(∂F/∂y) = x[-1 + log (y/x)] + y(x/y)
x(∂F/∂x) + y(∂F/∂y) = -x + xlog (y/x) + x
x(∂F/∂x) + y(∂F/∂y) = x log (y/x)
Hence it is proved.
Problem 3 :
If u(x, y) = (x2+y2)/√(x+y)
prove that x(∂u/∂x) + y(∂u/∂y) = (3/2)u
Solution :
u(x, y) = (x2+y2)/√(x+y)
Applying x = λx and y = λy
u(λx, λy) = ((λx)2+(λy)2)/√((λx)+(λy))
u(λx, λy) = ((λ2x2+λ2y)2)/√λ(x+y)
u(λx, λy) = λ2(x2+y)2/√λ(x+y)
u(λx, λy) = λ2-1/2(x2+y)2/√(x+y)
u(λx, λy) = λ3/2(x2+y)2/√(x+y)
It is a homogenous function of degree 3/2.
x(∂u/∂x) + y(∂u/∂y) = (3/2)u
Problem 4 :
If
v(x, y) = log [(x2+y2)/(x+y)]
prove that x(∂v/∂x) + y(∂v/∂y) = 1
Solution :
F = v = log [(x2+y2)/(x+y)]
F = ev = [(x2+y2)/(x+y)]
Applying x = λx and y = λy
v(λx, λy) = [(λx)2+(λy)2]/((λx)+(λy))
v(λx, λy) = [λ2(x2+y2)/λ(x+y)]
v(λx, λy) = λ[(x2+y2)/(x+y)]
It is a homogenous function of degree 1.
F = ev
|
∂F/∂x = ∂(ev)/∂x ∂F/∂x = ev(∂v/∂x) --(1) |
∂F/∂x = ∂(ev)/∂y ∂F/∂x = ev(∂v/∂y)--(2) |
(1)+(2)
x(∂F/∂x) + y(∂F/∂y) = nF
xev(∂v/∂x) + yev(∂v/∂y) = (1)ev
ev[x(∂v/∂x) + y(∂v/∂y)] = ev
[x(∂v/∂x) + y(∂v/∂y)] = 1
Hence it is proved.
Problem 4 :
If
w(x, y, z) = log[(5x3y4+7y2xz4-75y3z4)/(x2+y2)]
find x(∂w/∂x) + y(∂w/∂y) + z(∂w/∂z).
Solution :
F = w(x, y, z) = log[(5x3y4+7y2xz4-75y3z4)/(x2+y2)]
F = w = log[(5x3y4+7y2xz4-75y3z4)/(x2+y2)]
Let F = ew
w(λx, λy, λz) = [λ7(5x3y4+7y2xz4-75y3z4)/λ2(x2+y2)]
= λ5(5x3y4+7y2xz4-75y3z4)/(x2+y2)
It is a homogenous function of degree 5.
x(∂F/∂x) = x(∂(ew)/∂x) ==> xew(∂F/∂x) ----(1)
y(∂F/∂y) = y(∂(ew)/∂y) ==> yew(∂F/∂y) ----(2)
z(∂F/∂z) = z(∂(ew)/∂z) ==> zew(∂F/∂z) ----(3)
(1)+(2)+(3)
xew(∂F/∂x) + yew(∂F/∂y) + zew(∂F/∂z) = 5ew
x(∂F/∂x) + y(∂F/∂y) + z(∂F/∂z) = 5
Hence the answer is 5.

Apart from the stuff given above, if you need any other stuff in math, please use our google custom search here.
Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Nov 26, 25 09:03 AM
Nov 21, 25 09:03 AM
Nov 21, 25 07:36 AM