USING THE FORMULA OF EXPANSION OF BINOMIAL OF POWER 3

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

(a + b)3  =  a3 + 3a2b + 3ab2 + b3

(a - b)3  =  a3 - 3a2b + 3ab2 - b3

(a3 + b3)  =  (a + b)3 - 3ab(a + b)

(a3 - b3)  =  (a - b)3 - 3ab(a - b)

Example 1 :

Find x3 - y3, if  x - y  =  5 and xy  =  14

Solution :

x3 - y3, if  x - y  =  5 and xy  =  14

(a3 - b3)  =  (a - b)3 + 3ab(a - b)

(x3 - y3)  =  (x - y)3 + 3xy(x - y)

By using the given values, we get

(x3 - y3)  =  53 + 3(14)(5)

=  125 + 210

=  335

Example 2 :

If a + (1/a)  =  6, then find the value of a3 + 1/a3

Solution :

(a3 + b3)  =  (a + b)3 - 3ab(a + b)

a3 + (1/a)3  =   (a + (1/a))3 - 3a(1/a)(a + (1/a))

  =  63 - 3(6)

  =  216 - 18

  =  198

Example 3 :

If x2 + 1/x2  =  23, then find the value of x + (1/x) and x3 + (1/x3)

Solution :

a2 + b2  =  (a + b)2 - 2ab

x2 + (1/x)2  =  (x + (1/x))2 - 2x(1/x)

23  =  (x + (1/x))2 - 2

23 + 2  =  (x + (1/x))2

 (x + (1/x))=  25

x + (1/x)  =  5

x3 + (1/x)3  =  (x + (1/x))3 - 3x(1/x)(x + (1/x))

  =  53 - 3(5)

  =  125 - 15

  =  105

Hence the values of x + (1/x) and x3 + (1/x)3 are 5 and 105 respectively.

Example 4 :

If (y - (1/y))3  =  27, then find the value of y3 - (1/y)3

Solution :

(a3 - b3)  =  (a - b)3 - 3ab(a - b)

Given that :

(y - (1/y))3  =  27

(y - (1/y))3  =  33

(y - (1/y))  =  3

(y3 - (1/y)3)  =  (y - (1/y))3 - 3y(1/y)(y - (1/y))

  =  27 - 3(3)

  =  27 - 9

  =  18

Hence the value of (y3 - (1/y)3)  is 18.

Example 5 :

Find the coefficient of the term a²b in the expansion of (3a + 2b)³.

Solution :

(3a + 2b)³

Using the formula for (a + b)3 = a3 + 3a2 b + 3ab2 + b3

(3a + 2b)³ = (3a)3 + 3(3a)2 (2b) + 3(3a)(2b)2 + (2b)3

= 27a3 + 3(9a2) (2b) + 3(3a)(4b2) + 8b3

= 27a3 + 54a2b + 36ab2 + 8b3

So, the coefficient of a2b is 54.

Example 6 :

Factorise the following expression using formula.

m3 - n3

Solution :

a3  -b3 = (a - b) (a2 + ab + b2)

m3 - n3 (m - n) (m2 + mn + n2)

Example 7 :

If 3x + 4y = 11 and xy = 2, find the value of 27x3 + 64y3

Solution :

3x + 4y = 11 and xy = 2

27x3 + 64y3 = (3x)3 + (4y)3

Here a = 3x and b = 4y

a3  + b3 = (a + b) (a2 - ab + b2)

= (3x + 4y)((3x)2 - (3x)(4y) + (4y)2)

(3x + 4y)(9x2 - 12xy + 16y2) -----(1)

(9x2 + 16y2) = (3x)2 + (4y)2

a2 + b2 = (a + b)2 - 2ab 

= (3x + 4y)2 - 2(3x)(4y)

= (3x + 4y)2 - 24xy

= 112 - 24(2)

= 121 - 48

(9x2 + 16y2)  = 73

By applying these values in (1), we get

= 11(73 - 12(2))

= 11(73 - 24)

= 11(49)

= 539

Example 8 :

If x2 + 1/x2 = 83, find the value of x3 - 1/x3

Solution :

x2 + 1/x2 = 83

a3 - b3 = (a - b) (a2 + ab + b2)

a2 + b= (a + b)2 - 2ab

x3 - 1/x3 = (x - 1/x) (x2 + x(1/x) + (1/x)2)

= (x - 1/x) (x2 + 1 + (1/x2)) -----(1)

x2 + 1/x= (x - 1/x)2 + 2x(1/x)

= (x - 1/x)2 - 2

Applying the value of x2 + 1/x2, we get

83 = (x - 1/x)2 - 2

(x - 1/x)2 = 83 + 2

= 85

(x - 1/x) = √85

By applying these values in (1), we get

=  √85 (83 + 1)

= 84√85

Example 9 :

Find the value of 27x3 + 64y3 + 36xy (3x + 4y) when x = 5 and y = -3

Solution :

27x3 + 64y3 + 36xy (3x + 4y)

Applying x = 5 and y = -3

27(5)3 + 64(-3)3 + 36(5)(-3) (3(5) + 4(-3))

= 27(125) + 64(-27) + 36(-15) (15 - 12)

= 3375 - 1728 + (-540) (3)

= 3375 - 1728 - 1620

= 3375 - 3348

= 27

Example 10 :

Find the following products :

(9m + 2n)(81m2 - 18mn + 4n2)

Solution :

= (9m + 2n)(81m2 - 18mn + 4n2)

= (9m + 2n)((9m)2 - 9m(2n) + (2n)2)

a3 + b3 = (a + b) (a2 - ab + b2)

= (9m)3 + (2n)3

= 729m3 + 8n3

Example 11 :

Find the following products :

(5 - 2x)(25 + 10x + 4x2)

Solution :

= (5 - 2x)(25 + 10x + 4x2)

= (5 - 2x)(52 + 5(2x) + 22x2)

= (5 - 2x)(52 + 5(2x) + (2x)2)

= 53 - (2x)3

= 125 - 8x3

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. 10 Hard SAT Math Questions (Part - 36)

    Nov 28, 25 09:55 AM

    digitalsatmath409.png
    10 Hard SAT Math Questions (Part - 36)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 7)

    Nov 26, 25 09:03 AM

    Digital SAT Math Problems and Solutions (Part - 7)

    Read More

  3. Hcf and Lcm Word Problems

    Nov 21, 25 09:03 AM

    Hcf and Lcm Word Problems

    Read More