Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.
(a + b)3 = a3 + 3a2b + 3ab2 + b3
(a - b)3 = a3 - 3a2b + 3ab2 - b3
(a3 + b3) = (a + b)3 - 3ab(a + b)
(a3 - b3) = (a - b)3 - 3ab(a - b)
Example 1 :
Find x3 - y3, if x - y = 5 and xy = 14
Solution :
x3 - y3, if x - y = 5 and xy = 14
(a3 - b3) = (a - b)3 + 3ab(a - b)
(x3 - y3) = (x - y)3 + 3xy(x - y)
By using the given values, we get
(x3 - y3) = 53 + 3(14)(5)
= 125 + 210
= 335
Example 2 :
If a + (1/a) = 6, then find the value of a3 + 1/a3
Solution :
(a3 + b3) = (a + b)3 - 3ab(a + b)
a3 + (1/a)3 = (a + (1/a))3 - 3a(1/a)(a + (1/a))
= 63 - 3(6)
= 216 - 18
= 198
Example 3 :
If x2 + 1/x2 = 23, then find the value of x + (1/x) and x3 + (1/x3)
Solution :
a2 + b2 = (a + b)2 - 2ab
x2 + (1/x)2 = (x + (1/x))2 - 2x(1/x)
23 = (x + (1/x))2 - 2
23 + 2 = (x + (1/x))2
(x + (1/x))2 = 25
x + (1/x) = 5
x3 + (1/x)3 = (x + (1/x))3 - 3x(1/x)(x + (1/x))
= 53 - 3(5)
= 125 - 15
= 105
Hence the values of x + (1/x) and x3 + (1/x)3 are 5 and 105 respectively.
Example 4 :
If (y - (1/y))3 = 27, then find the value of y3 - (1/y)3
Solution :
(a3 - b3) = (a - b)3 - 3ab(a - b)
Given that :
(y - (1/y))3 = 27
(y - (1/y))3 = 33
(y - (1/y)) = 3
(y3 - (1/y)3) = (y - (1/y))3 - 3y(1/y)(y - (1/y))
= 27 - 3(3)
= 27 - 9
= 18
Hence the value of (y3 - (1/y)3) is 18.
Example 5 :
Find the coefficient of the term a²b in the expansion of (3a + 2b)³.
Solution :
(3a + 2b)³
Using the formula for (a + b)3 = a3 + 3a2 b + 3ab2 + b3
(3a + 2b)³ = (3a)3 + 3(3a)2 (2b) + 3(3a)(2b)2 + (2b)3
= 27a3 + 3(9a2) (2b) + 3(3a)(4b2) + 8b3
= 27a3 + 54a2b + 36ab2 + 8b3
So, the coefficient of a2b is 54.
Example 6 :
Factorise the following expression using formula.
m3 - n3
Solution :
a3 -b3 = (a - b) (a2 + ab + b2)
m3 - n3 = (m - n) (m2 + mn + n2)
Example 7 :
If 3x + 4y = 11 and xy = 2, find the value of 27x3 + 64y3
Solution :
3x + 4y = 11 and xy = 2
27x3 + 64y3 = (3x)3 + (4y)3
Here a = 3x and b = 4y
a3 + b3 = (a + b) (a2 - ab + b2)
= (3x + 4y)((3x)2 - (3x)(4y) + (4y)2)
= (3x + 4y)(9x2 - 12xy + 16y2) -----(1)
(9x2 + 16y2) = (3x)2 + (4y)2
a2 + b2 = (a + b)2 - 2ab
= (3x + 4y)2 - 2(3x)(4y)
= (3x + 4y)2 - 24xy
= 112 - 24(2)
= 121 - 48
(9x2 + 16y2) = 73
By applying these values in (1), we get
= 11(73 - 12(2))
= 11(73 - 24)
= 11(49)
= 539
Example 8 :
If x2 + 1/x2 = 83, find the value of x3 - 1/x3
Solution :
x2 + 1/x2 = 83
a3 - b3 = (a - b) (a2 + ab + b2)
a2 + b2 = (a + b)2 - 2ab
x3 - 1/x3 = (x - 1/x) (x2 + x(1/x) + (1/x)2)
= (x - 1/x) (x2 + 1 + (1/x2)) -----(1)
x2 + 1/x2 = (x - 1/x)2 + 2x(1/x)
= (x - 1/x)2 - 2
Applying the value of x2 + 1/x2, we get
83 = (x - 1/x)2 - 2
(x - 1/x)2 = 83 + 2
= 85
(x - 1/x) = √85
By applying these values in (1), we get
= √85 (83 + 1)
= 84√85
Example 9 :
Find the value of 27x3 + 64y3 + 36xy (3x + 4y) when x = 5 and y = -3
Solution :
27x3 + 64y3 + 36xy (3x + 4y)
Applying x = 5 and y = -3
= 27(5)3 + 64(-3)3 + 36(5)(-3) (3(5) + 4(-3))
= 27(125) + 64(-27) + 36(-15) (15 - 12)
= 3375 - 1728 + (-540) (3)
= 3375 - 1728 - 1620
= 3375 - 3348
= 27
Example 10 :
Find the following products :
(9m + 2n)(81m2 - 18mn + 4n2)
Solution :
= (9m + 2n)(81m2 - 18mn + 4n2)
= (9m + 2n)((9m)2 - 9m(2n) + (2n)2)
a3 + b3 = (a + b) (a2 - ab + b2)
= (9m)3 + (2n)3
= 729m3 + 8n3
Example 11 :
Find the following products :
(5 - 2x)(25 + 10x + 4x2)
Solution :
= (5 - 2x)(25 + 10x + 4x2)
= (5 - 2x)(52 + 5(2x) + 22x2)
= (5 - 2x)(52 + 5(2x) + (2x)2)
= 53 - (2x)3
= 125 - 8x3
Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Nov 28, 25 09:55 AM
Nov 26, 25 09:03 AM
Nov 21, 25 09:03 AM