USING ALGEBRAIC IDENTITIES PRACTICE QUESTIONS

Problem 1 :

If x-y  =  2 and xy  =  24, what is the value of x + y ?

Problem 2 :

If

a+b+c  =  15 and a2+b2+c2  =  83

what is the value of ab+bc+ca ?

Problem 3 :

If a-b  =  4 and ab  =  60, what is the value of a + b ?

Problem 4 :

If x-1/x  =  4, prove that x4 + 1/x4  =  322

Problem 5 :

If x - y  =  8 and xy  =  5, what is the value of

x3-y3 + 8(x+y)

Problem 6 :

If a - b  =  5 and ab  =  36, find the value of

(i)  a2+ab+b2

(ii)  a3-b3

Problem 7 :

If x + y  =  5, xy  =  6 and x > y

(i)  Find the value of 2(x2 + y2)

(ii)  Find the value of x3-y3-3(x2+y2)

(iii)  Find the value of x5+y5.

Problem 8 :

If 3(a + b)^2 / 3(a - b)^2 = 343, what is the value of ab ?

Problem 9 :

If (ax - 1) (bx + 2) = cx2 - x - 2 for all values of x, and a + b = 10, what is the value of c ?

(1)  Solution :

(x + y)2  =  x2+2xy+y ----(1)

(x - y)2  =  x2-2xy+y2 ----(2)

From (2)

x2+y=  (x - y)2 + 2xy

By applying the value of x2+y2 in (1), we get

(x + y)2  =  2xy + (x - y)+ 2xy

(x + y)2  =  (x - y)+ 4xy

Here x - y  =  2 and xy  =  24

(x + y)2  =  (2)+ 4(24)

(x + y)2  =  4 + 96

(x + y)  =  100

x+y  =  ±10

(2)  Solution :

(a+b+c)2  =  a2+b2+c2+2ab+2bc+2ca

By applying the given value, we get

(a+b+c)2  =  a2+b2+c2+2(ab+bc+ca)

152  =  83+2(ab+bc+ca)

225-83  =  2(ab+bc+ca)

142  =  2(ab+bc+ca)

ab+bc+ca  =  71

(3)  Solution :

(a + b)2  =  a2+2ab+b2   ----(1)

(a - b)2  =  a2-2ab+b2 ----(2)

From (2)

a2+b2  =  (a - b)+ 2ab

By applying the value of a2+b2 in (1), we get

(a + b)2  =  2ab + (a - b)+ 2ab

(a + b)2  =  (a - b)+ 4ab

Here a - b  =  4 and ab  =  60

(a + b)2  =  4+ 4(60)

(a + b)2  =  16 + 240

(a + b)  =  √256

a+b  =  ±16

(4)  Solution :

Given :

x-1/x  =  4

Taking squares on both sides, we get

(x-1/x) =  42

x2-2x(1/x)-1/x2  =  16

x2-2+1/x2  =  16

x2+1/x2  =  18

Again taking squares on both sides, we get

(x2+1/x2)2  =  182

x4+1/x4 + 2  =  324

x4+1/x4  =  322

(5)  Solution :

(a-b)3  =  a3-3a2b+3ab2-b3

 a3-b=  (a-b)3-3ab(a-b)

x3-y3  =  (x-y)3-3xy(x-y)

x3-y3  =  83-3(5)(8)

x3-y3  =  512-120

x3-y3  =  392

x3-y3 + 8(x+y)  =  392 + 8(8)

x3-y3 + 8(x+y)  =  392+64

x3-y3 + 8(x+y)  =  456

(6)  Solution :

(i)  a2+ab+b

(a-b)2  =  a2-2ab+b2

52  =  a2-2(36)+b2

a2+b2  =  25+72

a2+b2  =  97

a2+b2 + ab  =  97+36

a2 + ab + b2  =  133

(ii)  a3-b3

a3-b3  =  (a-b)(a2+ab+b2)

a3-b3  =  (5)(133)

a3-b3  =  665

(7)  Solution :

(i)  2(x2 + y2) :

(x+y)2  =  x2+y2+2xy

52  =  x2+y2+2(6)

25-12  =  x2+y2

 x2+y =  13

2(x2+y2)  =  26

(ii) x3-y3-3(x2+y2)

x3-y=  (x-y)3+3xy(x-y)  --(1)

(x-y)  =  √(x+y)2-4xy

(x-y)  =  √52-4(6)

(x-y)  =  ±1

If x - y  =  1

x3-y3  =  13+3(6)(1)

x3-y3  =  19

If x - y  =  -1

x3-y3  =  -13+3(6)(-1)

x3-y3  =  -19

x3-y3-3(x2+y2)  =  19-3(13)  ==>  -20

x3-y3-3(x2+y2)  =  -19-3(13)  ==>  -58

Given x+y  =  5 ----(2)

x-y  =  1  ----(3)

(2) + (3)

2x  =  6 and x  =  3

So, y  =  2

(iiii)  x5+y5  

x5+y5    =  35+25

=  243+32

=  275

(8) Solution :

3(a + b)^2 / 3(a - b)^2 = 243

Since we have same base in the numerator and in denominator, we have to only one base and combine the powers.

3(a + b)^2 3-(a + b)^2 = 243

3(a + b)^2 3-(a + b)^2 = 35

Since we have same bases on both sides of the equal sign, we have to equate the powers.

a2 + 2ab + b2 - (a2 - 2ab + b2) = 5

a2 + 2ab + b2 - a2 + 2ab - b2 = 5

4ab = 5

ab = 5/4

So, the value of ab is 5/4.

(9)  Solution :


Solution :

(ax - 1)(bx + 2) = cx2 - x - 2

abx2 + 2ax - bx - 2 = cx2 - x - 2

abx2 + (2a - b)x - 2 = cx2 - x - 2

Equating the coefficients of corresponding terms, we get

ab = c ----(1)

2a - b = -1 ------(2)

Given that a + b = 10

b = 10 - a

Applying the value of b in (2), we get

2a - (10 - a) = -1

2a - 10 + a = -1

3a - 10 = -1

3a = -1 + 10

3a = 9

a = 3

Applying the value of a in b = 10 - a

b = 10 - 3

b = 7

ab = c

By applying the values of a and b, we get 

c = 3(7)

c = 21

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 213)

    Jul 13, 25 09:51 AM

    digitalsatmath292.png
    Digital SAT Math Problems and Solutions (Part - 213)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 212)

    Jul 13, 25 09:32 AM

    digitalsatmath290.png
    Digital SAT Math Problems and Solutions (Part - 212)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 211)

    Jul 11, 25 08:34 AM

    digitalsatmath289.png
    Digital SAT Math Problems and Solutions (Part - 211)

    Read More