TRIPLE ANGLE IDENTITIES

Using the following double angle identities, we can derive triple angle identities.

sin2A = 2sinAcosA

cos2A = 2cos2A - 1

cos2A = 1 - 2sin2A

tan2A = 2tanA/(1 - tan2A)

Identity 1 : sin3A = 3sinA - 4sin3A

Proof : 

sin3A = sin(2A + A)

= sin2AcosA + cos2AsinA

= 2sinAcosAcosA + (1 - 2sin2A)sinA

= 2sinAcos2A + sinA - 2sin3A

= 2sinA(1 - sin2A) + sinA - 2sin3A

= 2sinA - 2sin3A + sinA - 2sin3A

= 3sinA - 4sin3A

Identity 2 : cos3A = 4cos3A - 3cosA

Proof : 

cos3A = cos(2A + A)

= cos2AcosA - sin2AsinA

= (2cos2A - 1)cosA - 2sinAcosAsinA

= 2cos3A - cosA - 2cosAsin2A

= 2cos3A - cosA - 2cosA(1 - cos2A)

= 2cos3A - cosA - 2cosA + 2cos3A

= 4cos3A - 3cosA

Identity 3 : tan3A = (3tanA - tan3A)/(1 - 3tan2A)

Proof : 

tan3A = tan(2A + A)

= (tan2A + tanA)/(1 - tan2AtanA)

Using double angle identity tan2A = 2tanA/(1 - tan2A), 

= (3tanA - tan3A)/(1 - 3tan2A)

Double and Triple Angle Identities

Sine : 

sin2A = 2sinAcosA

sin2A = 2tanA/(1 + tan2A)

sin3A = 3sinA - 4sin3A

Cosine : 

cos2A = cos2A - sin2A

cos2A = 2cos2A - 1

cos2A = 1 - 2sin2A

cos2A = (1 - tan2A)/(1 + tan2A)

cos3A = 4cos3A - 3cosA

Tangent : 

tan2A = 2tanA/(1 - tan2A)

tan3A = (3tanA - tan3A)/(1 - 3tan2A)

Problem 1 :

Show that 

tan 3x tan 2x tan x = tan 3x - tan 2x - tan x 

Solution :

tan 3x = tan (2x + x)

Expanding using the formula of

tan (A + B) = (tan A + tan B)/(1 - tan A tan B)

tan 3x = (tan 2x + tan x)/(1 - tan 2x  tan x)

tan 3x (1 - tan 2x  tan x) = tan 2x + tan x

tan 3x - tan 3x tan 2x  tan x = tan 2x + tan x

tan 3x - tan 2x - tan x = tan 3x tan 2x  tan x

Hence it is proved.

Problem 2 :

Prove that

tan 20° tan 40° tan 60° tan 80° = 3

Solution :

L.H.S

= tan 20° tan 40° tan 60° tan 80°

= tan 20° tan 40°.  √3 tan 80°

 √3 tan20° tan (60° - 20°) tan (60° + 20°)

tan (60° - 20°) = (tan 60 - tan 20)/(1 + tan 60 tan 20)

tan 60 = √3

= (√3 - tan 20)/(1 + √3 tan 20)

tan (60° + 20°) = (tan 60 + tan 20)/(1 - tan 60 tan 20)

= (√3 + tan 20)/(1 - √3 tan 20)

 √3 tan20° ((√3 - tan 20)/(1 + √3 tan 20)) ((√3 + tan 20)/(1 - √3 tan 20))

 √3 tan20° (√32 - tan2 20)/(12 - (√3 tan 20)2)

 √3 tan20° (3 - tan2 20)/(1 - tan2 20)

=  √3 (3tan20° - tan3 20)/(1 - tan3 20)

=  √3 tan 3(20)

=  √3 tan 60

=  √3 √3

= 3

R.H.S

Problem 3 :

(cos3θ - cos 3θ) / cos θ + (sin3θ + sin 3θ) / sin θ = 3

Solution :

L.H.S

= (cos3θ - cos 3θ) / cos θ + (sin3θ + sin 3θ) / sin θ

cos 3θ = 4 cos3θ - 3 cos θ

sin 3θ = 3 sin θ - 4 sin3 θ

(cos3θ - cos 3θ) / cos θ = [cos3θ - (4 cos3θ - 3 cos θ)] / cos θ

= [cos3θ - 4 cos3θ + 3 cos θ] / cos θ

= [-3 cos3θ + 3 cos θ] / cos θ

= 3cos θ(-cos2θ + 1)/ cos θ

= 3cos θ(1 - cos2θ)/ cos θ

= 3(1 - cos2θ) ------(1)

(sin3θ + sin 3θ) / sin θ

= [sin3θ + (3 sin θ - 4 sin3 θ)] / sin θ

= [sin3θ + 3 sin θ - 4 sin3 θ] / sin θ

= [-3 sin3 θ + 3 sin θ] / sin θ

= 3 sin θ [-sin2 θ + 1] / sin θ

= 3 (1 - sin2 θ) ------(2)

(1) + (2)

= 3(1 - cos2θ) + 3(1 - sin2θ)

= 3(sin2θ) + 3(cos2θ)

= 3(sin2θ + cos2θ)

= 3(1)

= 3

Problem 4 :

(sin 3x + sin x) sin x + (cos 3x - cos x) cos x = 0

Solution :

L.H.S

(sin 3x + sin x) sin x + (cos 3x - cos x) cos x

= (3 sin x - 4 sin3 x + sin x) sin x + [(4 cos3 x - 3 cos x) - cos x)] cos x

= (4 sin x - 4 sin3 x) sin x + (4 cos3 x - 4 cos x) cos x

= 4 sin2 x - 4 sin4 x + 4 cos4 x - 4 cos2 x

= 4 sin2 x - 4 cos2 x - 4 sin4 x + 4 cos4 x

= 4(sin2 x - cos2 x) - 4(sin4 x - cos4 x)

= 4(sin2 x - cos2 x) - 4[(sin2 x - cos2 x)(sin2 x + cos2 x)]

= 4(sin2 x - cos2 x) - 4[1(sin2 x - cos2 x)]

= 4 sin2 x - 4 cos2 x - 4sin2 x + 4 cos2 x

= 0

Hence it is proved.

Problem 5 :

The value of

cos A cos (60° - A)cos (60° + A)

is equal to…..

A) (1/2) cos 3A      B) cos 3A

C) 1/4 cos 3A         D) 4cos3A

Solution :

cos A cos (60° - A) cos (60° + A)

Expanding cos (60° - A) :

cos (A - B) = cos A cos B + sin A  sin B

= cos 60 cos A + sin 60 sin A

= (1/2) cos A + (√3/2) sin A

= (cos A)/2 + (√3 sin A)/2

= (cos A + √3 sin A)/2

Expanding cos (60° + A) :

cos (A + B) = cos A cos B - sin A  sin B

= cos 60 cos A - sin 60 sin A

= (1/2) cos A - (√3/2) sin A

= (cos A)/2 - (√3 sin A)/2

= (cos A - √3 sin A)/2

cos A cos (60° - A)cos (60° + A)

= cos A (cos2 A - 3sin2A)/4

= cos A (cos2 A - 3(1 - cos2A))/4

= cos A (cos2 A - 3 + 3cos2A)/4

= cos A (4cos2 A - 3)/4

= (4cos3 A - 3 cos A)/4

= (1/4) cos 3A

So, option C is correct.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 154)

    Apr 30, 25 11:12 PM

    digitalsatmath187.png
    Digital SAT Math Problems and Solutions (Part - 154)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 153)

    Apr 29, 25 12:18 PM

    digitalsatmath185.png
    Digital SAT Math Problems and Solutions (Part - 153)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 152)

    Apr 28, 25 11:54 AM

    Digital SAT Math Problems and Solutions (Part - 152)

    Read More