Using the following double angle identities, we can derive triple angle identities.
sin2A = 2sinAcosA
cos2A = 2cos2A - 1
cos2A = 1 - 2sin2A
tan2A = 2tanA/(1 - tan2A)
Identity 1 : sin3A = 3sinA - 4sin3A
Proof :
sin3A = sin(2A + A)
= sin2AcosA + cos2AsinA
= 2sinAcosAcosA + (1 - 2sin2A)sinA
= 2sinAcos2A + sinA - 2sin3A
= 2sinA(1 - sin2A) + sinA - 2sin3A
= 2sinA - 2sin3A + sinA - 2sin3A
= 3sinA - 4sin3A
Identity 2 : cos3A = 4cos3A - 3cosA
Proof :
cos3A = cos(2A + A)
= cos2AcosA - sin2AsinA
= (2cos2A - 1)cosA - 2sinAcosAsinA
= 2cos3A - cosA - 2cosAsin2A
= 2cos3A - cosA - 2cosA(1 - cos2A)
= 2cos3A - cosA - 2cosA + 2cos3A
= 4cos3A - 3cosA
Identity 3 : tan3A = (3tanA - tan3A)/(1 - 3tan2A)
Proof :
tan3A = tan(2A + A)
= (tan2A + tanA)/(1 - tan2AtanA)
Using double angle identity tan2A = 2tanA/(1 - tan2A),
= (3tanA - tan3A)/(1 - 3tan2A)
Sine :
sin2A = 2sinAcosA
sin2A = 2tanA/(1 + tan2A)
sin3A = 3sinA - 4sin3A
Cosine :
cos2A = cos2A - sin2A
cos2A = 2cos2A - 1
cos2A = 1 - 2sin2A
cos2A = (1 - tan2A)/(1 + tan2A)
cos3A = 4cos3A - 3cosA
Tangent :
tan2A = 2tanA/(1 - tan2A)
tan3A = (3tanA - tan3A)/(1 - 3tan2A)
Problem 1 :
Show that
tan 3x tan 2x tan x = tan 3x - tan 2x - tan x
Solution :
tan 3x = tan (2x + x)
Expanding using the formula of
tan (A + B) = (tan A + tan B)/(1 - tan A tan B)
tan 3x = (tan 2x + tan x)/(1 - tan 2x tan x)
tan 3x (1 - tan 2x tan x) = tan 2x + tan x
tan 3x - tan 3x tan 2x tan x = tan 2x + tan x
tan 3x - tan 2x - tan x = tan 3x tan 2x tan x
Hence it is proved.
Problem 2 :
Prove that
tan 20° tan 40° tan 60° tan 80° = 3
Solution :
L.H.S
= tan 20° tan 40° tan 60° tan 80°
= tan 20° tan 40°. √3 tan 80°
= √3 tan20° tan (60° - 20°) tan (60° + 20°)
tan (60° - 20°) = (tan 60 - tan 20)/(1 + tan 60 tan 20)
tan 60 = √3
= (√3 - tan 20)/(1 + √3 tan 20)
tan (60° + 20°) = (tan 60 + tan 20)/(1 - tan 60 tan 20)
= (√3 + tan 20)/(1 - √3 tan 20)
= √3 tan20° ((√3 - tan 20)/(1 + √3 tan 20)) ((√3 + tan 20)/(1 - √3 tan 20))
= √3 tan20° (√32 - tan2 20)/(12 - (√3 tan 20)2)
= √3 tan20° (3 - tan2 20)/(1 - 3 tan2 20)
= √3 (3tan20° - tan3 20)/(1 - 3 tan3 20)
= √3 tan 3(20)
= √3 tan 60
= √3 √3
= 3
R.H.S
Problem 3 :
(cos3θ - cos 3θ) / cos θ + (sin3θ + sin 3θ) / sin θ = 3
Solution :
L.H.S
= (cos3θ - cos 3θ) / cos θ + (sin3θ + sin 3θ) / sin θ
cos 3θ = 4 cos3θ - 3 cos θ
sin 3θ = 3 sin θ - 4 sin3 θ
(cos3θ - cos 3θ) / cos θ = [cos3θ - (4 cos3θ - 3 cos θ)] / cos θ
= [cos3θ - 4 cos3θ + 3 cos θ] / cos θ
= [-3 cos3θ + 3 cos θ] / cos θ
= 3cos θ(-cos2θ + 1)/ cos θ
= 3cos θ(1 - cos2θ)/ cos θ
= 3(1 - cos2θ) ------(1)
(sin3θ + sin 3θ) / sin θ
= [sin3θ + (3 sin θ - 4 sin3 θ)] / sin θ
= [sin3θ + 3 sin θ - 4 sin3 θ] / sin θ
= [-3 sin3 θ + 3 sin θ] / sin θ
= 3 sin θ [-sin2 θ + 1] / sin θ
= 3 (1 - sin2 θ) ------(2)
(1) + (2)
= 3(1 - cos2θ) + 3(1 - sin2θ)
= 3(sin2θ) + 3(cos2θ)
= 3(sin2θ + cos2θ)
= 3(1)
= 3
Problem 4 :
(sin 3x + sin x) sin x + (cos 3x - cos x) cos x = 0
Solution :
L.H.S
(sin 3x + sin x) sin x + (cos 3x - cos x) cos x
= (3 sin x - 4 sin3 x + sin x) sin x + [(4 cos3 x - 3 cos x) - cos x)] cos x
= (4 sin x - 4 sin3 x) sin x + (4 cos3 x - 4 cos x) cos x
= 4 sin2 x - 4 sin4 x + 4 cos4 x - 4 cos2 x
= 4 sin2 x - 4 cos2 x - 4 sin4 x + 4 cos4 x
= 4(sin2 x - cos2 x) - 4(sin4 x - cos4 x)
= 4(sin2 x - cos2 x) - 4[(sin2 x - cos2 x)(sin2 x + cos2 x)]
= 4(sin2 x - cos2 x) - 4[1(sin2 x - cos2 x)]
= 4 sin2 x - 4 cos2 x - 4sin2 x + 4 cos2 x
= 0
Hence it is proved.
Problem 5 :
The value of
cos A cos (60° - A)cos (60° + A)
is equal to…..
A) (1/2) cos 3A B) cos 3A
C) 1/4 cos 3A D) 4cos3A
Solution :
cos A cos (60° - A) cos (60° + A)
Expanding cos (60° - A) :
cos (A - B) = cos A cos B + sin A sin B
= cos 60 cos A + sin 60 sin A
= (1/2) cos A + (√3/2) sin A
= (cos A)/2 + (√3 sin A)/2
= (cos A + √3 sin A)/2
Expanding cos (60° + A) :
cos (A + B) = cos A cos B - sin A sin B
= cos 60 cos A - sin 60 sin A
= (1/2) cos A - (√3/2) sin A
= (cos A)/2 - (√3 sin A)/2
= (cos A - √3 sin A)/2
cos A cos (60° - A)cos (60° + A)
= cos A (cos2 A - 3sin2A)/4
= cos A (cos2 A - 3(1 - cos2A))/4
= cos A (cos2 A - 3 + 3cos2A)/4
= cos A (4cos2 A - 3)/4
= (4cos3 A - 3 cos A)/4
= (1/4) cos 3A
So, option C is correct.
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Apr 30, 25 11:12 PM
Apr 29, 25 12:18 PM
Apr 28, 25 11:54 AM