Trigonometry is the branch of mathematics that studies the relationships involving lengths of sides and measures of angles of triangles.

It is a useful tool for engineers, scientists, and surveyors and is applied even in seismology and navigation.


The angle AOB is a measure formed by two rays OA and OB sharing the common point O as shown below. 

The common point O is called the vertex of the angle.

If we rotate the ray OA about its vertex O and takes the position OB, then OA and OB respectively are called the initial side and the terminal side of the angle produced.

An anticlockwise rotation generates a positive angle (angle with positive sign), while a clockwise rotation generates a negative angle (angle with negative sign).

One full anticlockwise (or clockwise) rotation of OA back to itself is called one complete rotation or revolution.

Degree Measure

The degree is a unit of measurement of angles and is represented by the symbol °.

In degrees, we split up one complete rotation into 360 equal parts and each part is one degree, denoted by 1°. Thus, 1° is 1/360 of one complete rotation.

To measure a fraction of an angle and also for accuracy of measurement of angles, minutes and seconds are introduced. One minute (1') corresponds to 1/60 of a degree and in turn a second (1'') corresponds to 1/60 of a minute (or) 1/3600 of a degree.

Pair of Angles - Classification

We shall classify a pair of angles in the following way for better understanding and usages.

(i) Two angles that have the exact same measure are called congruent angles.

(ii) Two angles that have their measures adding to 90° are called complementary angles.

(iii) Two angles that have their measures adding to 180° are called supplementary angles.

(iv) Two angles between 0° and 360° are conjugate if their sum equals 360°.

Angles in Standard Position

An angle is said to be in standard position, if its vertex is at the origin and its initial side is along the positive x-axis.

An angle is said to be in the first quadrant, if in the standard position, its terminal side falls in the first quadrant. Similarly, we can define for the other three quadrants.

Angles in standard position having their terminal sides along the x-axis or y-axis are called quadrantal angles.

Thus, 0°, 90°, 180°, 270° and 360° are quadrantal angles.

Coterminal Angles 

One complete rotation of a ray in the anticlockwise direction results in an angle measuring of 360°.

By continuing the anticlockwise rotation, angles larger than 360° can be produced.

If we rotate in clockwise direction, negative angles are produced.

Angles 57°, 417° and −303° have the same initial side and terminal side but with different amount of rotations, such angles are called coterminal angles.

Thus, angles in standard position that have the same terminal sides are coterminal angles . Hence, if α and β are coterminal angles, then

  =  α + k(360°), k is an integer

The measurements of coterminal angles differ by an integral multiple of 360°.

For example, 417° and −303° are coterminal because

417° − (−303°)  =  720°  =  2(360°)

Note : 

(i) Observe that 45°, −315° and 405° lie in the first quadrant.

(ii) The following pairs of angles are coterminal angles (30°, 390°) ; (280°, 1000°) and (−85°, 275°).

Radian Measure

The radian measure of an angle is the ratio of the arc length it subtends, to the radius of the circle in which it is the central angle.

Consider a circle of radius r. Let s be the arc length subtending an angle θ at the centre.


θ  =  arc length / radius  =  s/r radians


s  =  rθ 

Relationship between Degree and Radian Measures

We have degree and radian units to measure angles. One measuring unit is better than another if it can be defined in a simpler and more intuitive way.

For example, in measuring temperature, Celsius unit is better than Fahrenheit as Celsius was defined using 0° and 100° for freezing and boiling points of water.

Radian measure is better for conversion and calculations. Radian measure is more convenient for analysis whereas degree measure of an angle is more convenient to communicate the concept between people.

Greek Mathematicians observed the relation of π which arises from circumference of a circle and thus, π plays a crucial role in radian measure.

In unit circle, a full rotation corresponds to 360° whereas, a full rotation is related to 2π radians, the circumference of the unit circle.

Thus, we have the following relations :

2π radians  =  360°

Divide each side by 2. 

π radians  =  180° 


1 radian  =  (180/π)°  or  1°  =  (π/180) radians

x radians  =  (180x/π)°  or  x°  =  (πx/180) radians

Observe that the scale used in radians is much smaller than the scale in degrees. The smaller scale makes the graphs of trigonometric functions more visible and usable. The above relation gives a way to convert radians into degrees or degrees into radians.

Apart from the stuff given above, if you need any other stuff in math, please use our google custom search here.

Kindly mail your feedback to

We always appreciate your feedback.


Variables and constants

Writing and evaluating expressions

Solving linear equations using elimination method

Solving linear equations using substitution method

Solving linear equations using cross multiplication method

Solving one step equations

Solving quadratic equations by factoring

Solving quadratic equations by quadratic formula

Solving quadratic equations by completing square

Nature of the roots of a quadratic equations

Sum and product of the roots of a quadratic equations 

Algebraic identities

Solving absolute value equations 

Solving Absolute value inequalities

Graphing absolute value equations  

Combining like terms

Square root of polynomials 

HCF and LCM 

Remainder theorem

Synthetic division

Logarithmic problems

Simplifying radical expression

Comparing surds

Simplifying logarithmic expressions

Negative exponents rules

Scientific notations

Exponents and power


Quantitative aptitude

Multiplication tricks


Aptitude test online


Test - I

Test - II


Horizontal translation

Vertical translation

Reflection through x -axis

Reflection through y -axis

Horizontal expansion and compression

Vertical  expansion and compression

Rotation transformation

Geometry transformation

Translation transformation

Dilation transformation matrix

Transformations using matrices





Converting customary units worksheet

Converting metric units worksheet

Decimal representation worksheets

Double facts worksheets

Missing addend worksheets

Mensuration worksheets

Geometry worksheets

Comparing  rates worksheet

Customary units worksheet

Metric units worksheet

Complementary and supplementary worksheet

Complementary and supplementary word problems worksheet

Area and perimeter worksheets

Sum of the angles in a triangle is 180 degree worksheet

Types of angles worksheet

Properties of parallelogram worksheet

Proving triangle congruence worksheet

Special line segments in triangles worksheet

Proving trigonometric identities worksheet

Properties of triangle worksheet

Estimating percent worksheets

Quadratic equations word problems worksheet

Integers and absolute value worksheets

Decimal place value worksheets

Distributive property of multiplication worksheet - I

Distributive property of multiplication worksheet - II

Writing and evaluating expressions worksheet

Nature of the roots of a quadratic equation worksheets

Determine if the relationship is proportional worksheet


SAT - Math Practice

SAT - Math Worksheets

Hardest SAT Math Questions with Answers

Hardest PSAT Math Questions with Answers



Trigonometric ratio table

Problems on trigonometric ratios

Trigonometric ratios of some specific angles

ASTC formula

All silver tea cups

All students take calculus 

All sin tan cos rule

Trigonometric ratios of some negative angles

Trigonometric ratios of 90 degree minus theta

Trigonometric ratios of 90 degree plus theta

Trigonometric ratios of 180 degree plus theta

Trigonometric ratios of 180 degree minus theta

Trigonometric ratios of 180 degree plus theta

Trigonometric ratios of 270 degree minus theta

Trigonometric ratios of 270 degree plus theta

Trigonometric ratios of angles greater than or equal to 360 degree

Trigonometric ratios of complementary angles

Trigonometric ratios of supplementary angles 

Trigonometric identities 

Problems on trigonometric identities 

Trigonometry heights and distances

Domain and range of trigonometric functions 

Domain and range of inverse  trigonometric functions

Solving word problems in trigonometry

Pythagorean theorem


Mensuration formulas

Area and perimeter



Types of angles 

Types of triangles

Properties of triangle

Sum of the angle in a triangle is 180 degree

Properties of parallelogram

Construction of triangles - I 

Construction of triangles - II

Construction of triangles - III

Construction of angles - I 

Construction of angles - II

Construction angle bisector

Construction of perpendicular

Construction of perpendicular bisector

Geometry questions 

Angle bisector theorem

Basic proportionality theorem


Coordinate geometry formulas

Distance between two points

Different forms equations of straight lines

Point of intersection

Slope of the line 

Perpendicular distance


Area of triangle

Area of quadrilateral


Matrix Calculators

Coordinate geometry calculators

Statistics calculators

Mensuration calculators

Algebra calculators

Chemistry periodic calculator


Missing addend 

Double facts 

Doubles word problems


Direct proportion and inverse proportion

Constant of proportionality 

Unitary method direct variation

Unitary method inverse variation

Unitary method time and work


Order of rotational symmetry

Order of rotational symmetry of a circle

Order of rotational symmetry of a square

Lines of symmetry


Converting metric units

Converting customary units


HCF and LCM  word problems

Word problems on simple equations 

Word problems on linear equations 

Word problems on quadratic equations

Algebra word problems

Word problems on trains

Area and perimeter word problems

Word problems on direct variation and inverse variation 

Word problems on unit price

Word problems on unit rate 

Word problems on comparing rates

Converting customary units word problems 

Converting metric units word problems

Word problems on simple interest

Word problems on compound interest

Word problems on types of angles 

Complementary and supplementary angles word problems

Double facts word problems

Trigonometry word problems

Percentage word problems 

Profit and loss word problems 

Markup and markdown word problems 

Decimal word problems

Word problems on fractions

Word problems on mixed fractions

One step equation word problems

Linear inequalities word problems

Ratio and proportion word problems

Time and work word problems

Word problems on sets and Venn diagrams

Word problems on ages

Pythagorean theorem word problems

Percent of a number word problems

Word problems on constant speed

Word problems on average speed 

Word problems on sum of the angles of a triangle is 180 degree


Profit and loss shortcuts

Percentage shortcuts

Times table shortcuts

Time, speed and distance shortcuts

Ratio and proportion shortcuts

Domain and range of rational functions

Domain and range of rational functions with holes

Graphing rational functions

Graphing rational functions with holes

Converting repeating decimals in to fractions

Decimal representation of rational numbers

Finding square root using long division

L.C.M method to solve time and work problems

Translating the word problems in to algebraic expressions

Remainder when 2 power 256 is divided by 17

Remainder when 17 power 23 is divided by 16

Sum of all three digit numbers divisible by 6

Sum of all three digit numbers divisible by 7

Sum of all three digit numbers divisible by 8

Sum of all three digit numbers formed using 1, 3, 4

Sum of all three four digit numbers formed with non zero digits

Sum of all three four digit numbers formed using 0, 1, 2, 3

Sum of all three four digit numbers formed using 1, 2, 5, 6

©All rights reserved.

Recent Articles

  1. Linear Growth and Decay

    May 22, 22 03:05 AM

    Linear Growth and Decay

    Read More

  2. Worksheet on Probability

    May 22, 22 01:15 AM

    Worksheet on Probability

    Read More

  3. Probability Worksheet

    May 22, 22 01:12 AM

    Probability Worksheet

    Read More