# TRIGONOMETRY WORD PROBLEMS WORKSHEET WITH ANSWERS

Question 1 :

The angle of elevation of the top of the building at a distance of 50 m from its foot on a horizontal plane is found to be 60 degree. Find the height of the building.

Question 2 :

A ladder placed against a wall such that it reaches the top of the wall of height 6 m and the ladder is inclined at an angle of 60 degree. Find how far the ladder is from the foot of the wall.

Question 3 :

A string of a kite is 100 meters long and the inclination of the string with the ground is 60°. Find the height of the kite, assuming that there is no slack in the string.

Question 4 :

From the top of the tower 30 m height a man is observing the base of a tree at an angle of depression measuring 30 degree. Find the distance between the tree and the tower.

Question 5 :

A man wants to determine the height of a light house. He measured the angle at A and found that tan A = 3/4. What is the height of the light house if A is 40 m from the base ?

Question 6 :

A ladder is leaning against a vertical wall makes an angle of 20° with the ground. The foot of the ladder is 3 m from the wall. Find the length of ladder.

Question 7 :

A kite is flying at a height of 65 m attached to a string. If the inclination of the string with the ground is 31°,  find the length of string.

Question 8 :

The length of a string between a kite and a point on the ground is 90 m. If the string is making an angle θ with the level ground  such that tan θ = 15/8, how high will the kite be ?

Question 9 :

An airplane is observed to be approaching the air point. It is at a distance of 12 km from the point of observation and makes an angle of elevation of 50 degree. Find the height above the ground.

Question 10 :

A balloon is connected to a meteorological station by a cable of length 200 m inclined at 60 degree angle with the ground. Find the  height of the balloon from the ground. (Imagine that there is no slack in the cable) Question 1 :

The angle of elevation of the top of the building at a distance of 50 m from its foot on a horizontal plane is found to be 60°. Find the height of the building.

Solution : Now we need to find the length of the side AB.

tan 60°  =  AB/BC

√3  =  AB/50

√3 x 50  =  AB

AB  =  50√3

Approximate value of √3 is 1.732

AB  =  50 (1.732)

AB  =  86.6 m

So, the height of the building is 86.6 m.

Question 2 :

A ladder placed against a wall such that it reaches the top of the wall of height 6 m and the ladder is inclined at an angle of 60°. Find how far the ladder is from the foot of the wall.

Solution : Here AB represents height of the wall, BC represents the distance between the wall and the foot of the ladder and AC represents the length of the ladder.

In the right triangle ABC, the side which is opposite to angle 60° is known as opposite side (AB), the side which is opposite to 90° is called hypotenuse side (AC) and remaining side is called adjacent side (BC).

Now, we need to find the distance between foot of the ladder and the wall. That is, we have to find the length of BC.

tan θ  =  Opposite side/Adjacent side

tan60°  =  AB/BC

√3  =  6/BC

BC  =  6/√3

BC  =  (6/√3) x (√3/√3)

BC  =  (6√3)/3

BC  =  2√3

Approximate value of √3 is 1.732

BC  =  2 (1.732)

BC  =  3.464 m

So, the distance between foot of the ladder and the wall is 3.464 m.

Question 3 :

A string of a kite is 100 meters long and the inclination of the string with the ground is 60°. Find the height of the kite, assuming that there is no slack in the string.

Solution : Now we need to find the height of the side AB.

Sin θ  =  Opposite side/Hypotenuse side

sinθ  =  AB/AC

sin 60°  =  AB/100

√3/2  =  AB/100

(√3/2) x 100  =  AB

AB  =  50 √3 m

So, the height of kite from the ground 50 √3 m.

Question 4 :

From the top of the tower 30 m height a man is observing the base of a tree at an angle of depression measuring 30 degree. Find the distance between the tree and the tower.

Solution : Here AB represents height of the tower, BC represents the distance between foot of the tower and the foot of the tree.

Now we need to find the distance between foot of the tower and the foot of the tree (BC).

tan θ  =  Opposite side/Adjacent side

tan 30°  =  AB/BC

1/√3  =  30/BC

BC  =  30√3

Approximate value of √3 is 1.732

BC  =  30 (1.732)

BC  =  81.96 m

So, the distance between the tree and the tower is 51.96 m.

Question 5 :

A man wants to determine the height of a light house. He measured the angle at A and found that tan A = 3/4. What is the height of the light house if A is 40 m from the base ?

Solution : Now we need to find the height of the light house (BC).

tanA  =  BC/AB

Given : tanA  =  3/4

3/4  =  BC/40

3 x 40  =  BC x 4

BC  =  (3 x 40)/4

BC  =  (3 x 10)

BC  =  30 m

So, the height of the light house is 30 m.

Question 6 :

A ladder is leaning against a vertical wall makes an angle of 20° with the ground. The foot of the ladder is 3 m from the wall. Find the length of ladder.

Solution : Now we need to find the length of the ladder (AC).

Cos θ  =  Adjacent side/Hypotenuse side

Cos θ  =  BC/AC

Cos 20°  =  3/AC

0.9397  =  3/AC

AC  =  3/0.9397

AC  =  3.192

Question 7 :

A kite is flying at a height of 65 m attached to a string. If the inclination of the string with the ground is 31°,  find the length of string.

Solution : Now we need to find the length of the string AC.

Sin θ  =  Opposite side/Hypotenuse side

Sin θ  =  AB/AC

Sin 31°  =  AB/AC

0.5150  =  65/AC

AC  =  65/0.5150

AC  =  126.2 m

Hence, the length of the string is 126.2 m.

Question 8 :

The length of a string between a kite and a point on the ground is 90 m. If the string makes an angle θ with the ground level such that tan θ = 15/8, how high will the kite be ?

Solution : Now we need to find the length of the side AB.

Tan θ  =  15/8  --------> cot θ  =  8/15

csc θ  =  √(1+ cot²θ)

csc θ  =  √(1 + 64/225)

csc θ  =  √(225 + 64)/225

csc θ  =  √289/225

csc θ  =  17/15 -------> sin θ  =  15/17

But, sin θ  =  Opposite side/Hypotenuse side  =  AB/AC

AB/AC  =  15/17

AB/90  =  15/17

AB  =  (15 x 90)/17

AB  =  79.41

So, the height of the tower is 79.41 m.

Question 9 :

An airplane is observed to be approaching a point that is at a distance of 12 km from the point of observation and makes an angle of elevation of 50 degree. Find the height of the airplane above the ground.

Solution : Now we need to find the length of the side AB.

From the figure given above, AB stands for the height of the airplane above the ground.

sin θ  =  Opposite side/Hypotenuse side

sin 50°  =  AB/AC

0.7660  =  h/12

0.7660 x 12  =  h

h  =  9.192 km

So, the height of the airplane above the ground is 9.192 km.

Question 10 :

A balloon is connected to a meteorological station by a cable of length 200 m inclined at 60 degree angle with the ground. Find the  height of the balloon from the ground. (Imagine that there is no slack in the cable)

Solution : Now we need to find the length of the side AB.

From the figure given above, AB stands for the height of the balloon above the ground.

sin θ  =  Opposite side/Hypotenuse side

sin θ  =  AB/AC

sin 60°  =  AB/200

√3/2  =  AB/200

AB  =  (√3/2) x 200

AB  =  100√3

Approximate value of √3 is 1.732

AB  =  100 (1.732)

AB  =  173.2 m

So, the height of the balloon from the ground is 173.2 m. Apart from the stuff given in this section, if you need any other stuff in math, please use our google custom search here.

If you have any feedback about our math content, please mail us :

v4formath@gmail.com

You can also visit the following web pages on different stuff in math.

WORD PROBLEMS

Word problems on simple equations

Word problems on linear equations

Algebra word problems

Word problems on trains

Area and perimeter word problems

Word problems on direct variation and inverse variation

Word problems on unit price

Word problems on unit rate

Word problems on comparing rates

Converting customary units word problems

Converting metric units word problems

Word problems on simple interest

Word problems on compound interest

Word problems on types of angles

Complementary and supplementary angles word problems

Double facts word problems

Trigonometry word problems

Percentage word problems

Profit and loss word problems

Markup and markdown word problems

Decimal word problems

Word problems on fractions

Word problems on mixed fractrions

One step equation word problems

Linear inequalities word problems

Ratio and proportion word problems

Time and work word problems

Word problems on sets and venn diagrams

Word problems on ages

Pythagorean theorem word problems

Percent of a number word problems

Word problems on constant speed

Word problems on average speed

Word problems on sum of the angles of a triangle is 180 degree

OTHER TOPICS

Profit and loss shortcuts

Percentage shortcuts

Times table shortcuts

Time, speed and distance shortcuts

Ratio and proportion shortcuts

Domain and range of rational functions

Domain and range of rational functions with holes

Graphing rational functions

Graphing rational functions with holes

Converting repeating decimals in to fractions

Decimal representation of rational numbers

Finding square root using long division

L.C.M method to solve time and work problems

Translating the word problems in to algebraic expressions

Remainder when 2 power 256 is divided by 17

Remainder when 17 power 23 is divided by 16

Sum of all three digit numbers divisible by 6

Sum of all three digit numbers divisible by 7

Sum of all three digit numbers divisible by 8

Sum of all three digit numbers formed using 1, 3, 4

Sum of all three four digit numbers formed with non zero digits

Sum of all three four digit numbers formed using 0, 1, 2, 3

Sum of all three four digit numbers formed using 1, 2, 5, 6

1. Click on the HTML link code below.

Featured Categories

Math Word Problems

SAT Math Worksheet

P-SAT Preparation

Math Calculators

Quantitative Aptitude

Transformations

Algebraic Identities

Trig. Identities

SOHCAHTOA

Multiplication Tricks

PEMDAS Rule

Types of Angles

Aptitude Test 