Pythagorean Identities in Trigonometry :
sin2θ + cos2θ = 1
sin2θ = 1 - cos2θ
cos2θ = 1 - sin2θ
sec2θ - tan2θ = 1
sec2θ = 1 + tan2θ
tan2θ = sec2θ - 1
csc2θ - cot2θ = 1
csc2θ = 1 + cot2θ
cot2θ = csc2θ - 1
Problems 1 - 5 : Prove the given statment.
Problem 1 :
Solution :
Problem 2 :
Solution :
Problem 3 :
Solution :
Problem 4 :
Solution :
Problem 5 :
Solution :
Problem 6 :
Solution :
Problem 7 :
(sec θ + tan θ)(sec θ + tan θ) = 1
Solution :
= (sec θ + tan θ)(sec θ + tan θ)
Using the algebraic identity a2 - b2 = (a + b)(a - b),
= sec2θ - tan2θ
= 1
Problem 8 :
(1 + tan θ)2 = sec2θ + 2tan θ
Solution :
= (1 + tan θ)2
Using the algebraic identity (a2 + b2) = a2 + 2ab + b2.
= 12 + 2(1)tan θ + tan2θ
= 1 + tan2θ + 2tan θ
= sec2θ + 2tan θ
Problem 9 :
sec2θ - csc2θ = tan2θ - cot2θ
Solution :
= sec2θ - csc2θ
= sec2θ - (1 + cot2θ)
= sec2θ - 1 - cot2θ
= tan2θ - cot2θ
Problem 10 :
sin4θ - cos4θ = sin2θ - cos2θ
Solution :
= sin4θ - cos4θ
= (sin2θ)2 - (cos2θ)2
Using the algebraic identity a2 - b2 = (a + b)(a - b),
= (sin2θ + cos2θ)(sin2θ - cos2θ)
= (1)(sin2θ - cos2θ)
= sin2θ - cos2θ
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Dec 08, 24 08:11 PM
Dec 07, 24 07:39 AM
Dec 07, 24 07:36 AM