# TRIGONOMETRY PROVING PROBLEMS FOR CLASS 11

Problem 1 :

If A + B = 45°, show that

(1 + tan A)(1 + tan B)  =  2

Solution :

A + B  =  45°

tan (A + B)  =  tan 45°

(tan A + tan B)/(1 - tan A tan B)  =  1

tan A + tan B  =  1 - tan A tan B

Add tan A tan B on both sides.

tan A + tan B + tan A tan B =  1

tan A + tan B(1 + tan A)  =  1

1 + tan A + tan B(1 + tan A)  =  1 + 1

(1 + tan A) (1 + tan B)  =  2

Hence proved.

Problem 2 :

Prove that (1 + tan1°)(1 + tan2°)(1 + tan3°).......(1 + tan44°) is a multiple of 4.

Solution :

=  (1 + tan1°)(1 + tan2°)(1 + tan3°)................(1 + tan44°)

=  (1 + tan1°)(1 + tan44°)(1 + tan2°)(1 + tan43°)(1 + tan3°)(1 + tan42°)................

If A + B  =  45°then

(1 + tanA)(1 + tanB)  =  2

In the first two terms, we have 1 instead of A and 44 instead of B.

In a same manner, in third and 4th terms we have 2 instead of A and 43 instead of B. So, we get

=  2(2)(2)........................

It is a multiple of 4.

Problem 3 :

Prove that

tan (π/+ θ) - tan (π/− θ)  =  2 tan2θ

Solution :

tan(π/+ θ)  =  (tanπ/4 + tanθ) / (1 - tanπ/4tanθ) :

tan(π/4 + θ)  =  (1 + tanθ) / (1 - tanθ)

tan(π/4 - θ)  =  (tanπ/4 - tanθ) / (1 + tanπ/4tanθ) :

tan(π/4 - θ)  =  (1 - tanθ) / (1 + tanθ)

Then,

tan(π/4 + θ) - tan(π/4 - θ) :

=  [(1 + tanθ) / (1 - tanθ)] - [(1 - tanθ) / (1 + tanθ)]

=  [(1 + tanθ)2(1 - tanθ)2] / (1 - tanθ)(1 + tanθ)

=  [(1+tan2θ+2tanθ) - (1+tan2θ-2tanθ)]/(1-tanθ)(1+tanθ)

=  4tanθ/(1 - tan2θ)

=  2[2tanθ / (1 - tan2θ)]

=  2tan2θ

Hence proved.

Apart from the stuff given above, if you need any other stuff in math, please use our google custom search here.

Kindly mail your feedback to v4formath@gmail.com

## Recent Articles

1. ### SAT Math Videos

May 22, 24 06:32 AM

SAT Math Videos (Part 1 - No Calculator)

2. ### Simplifying Algebraic Expressions with Fractional Coefficients

May 17, 24 08:12 AM

Simplifying Algebraic Expressions with Fractional Coefficients