TRIGONOMETRIC RATIOS OF SOME SPECIFIC ANGLES

About "Trigonometric ratios of some specific angles"

Trigonometric ratios of some specific angles :

For certain specific angles such as 30°, 45° an d 60°, which are frequently seen in applications, we can use geometry to determine the trigonometric ratios.

Trigonometric ratios of 30° and 60°

Let ABC be an equilateral triangle whose sides have length a (see the figure given below). Draw AD perpendicular to BC, then D bisects the side BC.

So, BD  =  DC  =  a/2 and   < BAD  =  <DAC  =  30°.

Now, in right triangle ADB, <BAD  =  30° and BD  =  a/2.

In right triangle ADB, by Pythagorean theorem, 

AB²  =  AD² + BD²

a²  =  AD² + (a/2)²

AD²  =  a² - (a²/4)

AD²  =  3a²/4

AD  =  √(3a²/4)

AD  =  3 x (a/2)

Hence, we can find the trigonometric ratios of angle 30° from the right triangle ADB. 

In right triangle ADB, <ABD  =  60°. So, we can determine the trigonometric ratios of angle 60°. 

Trigonometric ratio of 45°

If an acute angle of a right triangle is 45°, then the other acute angle is also 45°. 

Thus the triangle is isosceles. Let us consider the triangle ABC with <B  =  90°, <A  =  <C  =  45°

Then AB  =  BC. Let AB  =  BC  =  a.

By Pythagorean theorem,

AC²  =  AB² + BC²

AC²  =  a² + a²

AC²  =  2a²

AC  =  √2 x a

Hence, we can find the trigonometric ratios of angle 45° from the right triangle ABC. 

Trigonometric ratios of 0° and 90°

Consider the figure given below which shows a circle of radius 1 unit centered at the origin.

Let P be a point on the circle in the first quadrant with coordinates (x, y).

We drop a perpendicular PQ from P to the x-axis in order to form the right triangle OPQ.

Let <POQ  =  θ, then 

sin θ  =  PQ / OP  =  y/1  =  y  (y coordinate of P)

cos θ  =  OQ / OP  =  x/1  =  x  (x coordinate of P)

tan θ  =  PQ / OQ  =  y/x

If OP coincides with OA, then angle θ  =  0°.

Since, the coordinates of A are (1, 0), we have

If OP coincides with OB, then angle θ  =  90°.

Since, the coordinates of B are (0, 1), we have

The six trigonometric ratios of angles 0°, 30°, 45°, 60° and 90° are provided in the following table.

After having gone through the stuff given above, we hope that the students would have understood "Trigonometric ratios of some specific angles"

If you want to know more about "Trigonometric ratios of some specific angles, please click here

If you need any other stuff in math, please use our google custom search here.

Widget is loading comments...