TRIGONOMETRIC RATIOS OF 180 DEGREE MINUS THETA

Trigonometric ratios of 180 degree minus theta is one of the branches of ASTC formula in trigonometry. 

Trigonometric-ratios of 180 degree minus theta are given below.

sin (180° - θ)  =  sin θ

cos (180° - θ)  =  - cos θ

tan (180° - θ)  =  - tan θ

csc (180° - θ)  =  csc θ

sec (180° - θ)  =  - sec θ

cot (180° - θ)  =  - cot θ

Let us see, how the trigonometric ratios of 180 degree minus theta are determined. 

To know that, first we have to understand ASTC formula. 

The ASTC formula can be remembered easily using the following phrases.

"All Sliver Tea Cups" 

or

"All Students Take Calculus"

ASTC formla has been explained clearly in the figure given below.

More clearly 

From the above picture, it is very clear that 

(180° - θ) falls in the second quadrant and 

In the third quadrant (180° + θ), tan and cot are positive and other trigonometric ratios are negative.

Important Conversions

When we have the angles 90° and 270° in the trigonometric ratios in the form of

(90° + θ)

(90° - θ)

(270° + θ)

(270° - θ)

We have to do the following conversions, 

sin θ <------> cos θ

tan θ <------> cot θ

csc θ <------> sec θ

For example,

sin (270° + θ)  =  - cos θ

cos (90° - θ)  =  sin θ

For the angles 0° or 360° and  180°, we should not make the above conversions. 

Evaluation of Trigonometric Ratios of 180 Degree Minus Theta

Problem 1 :

Evaluate :

sin (180° - θ)

Solution :

To evaluate sin (180° - θ), we have to consider the following important points. 

(i)  (180° - θ) will fall in the II nd quadrant. 

(ii)  When we have 180°, "sin" will not be changed as "cos"

(iii)  In the II nd quadrant, the sign of "sin" is positive. 

Considering the above points, we have 

sin (180° - θ)  =  sin θ

Problem 2 :

Evaluate :

cos (180° - θ)

Solution :

To evaluate cos (180° - θ), we have to consider the following important points. 

(i)  (180° - θ) will fall in the II nd quadrant. 

(ii)  When we have 180°, "cos" will not be changed as "sin"

(iii)  In the II nd quadrant, the sign of "cos" is negative. 

Considering the above points, we have 

cos (180° - θ)  =  - cos θ

Problem 3 :

Evaluate :

tan (180° - θ)

Solution :

To evaluate tan (180° - θ), we have to consider the following important points. 

(i)  (180° - θ) will fall in the II nd quadrant. 

(ii)  When we have 180°, "tan" will not be changed as "cot"

(iii)  In the II nd quadrant, the sign of "tan" is negative. 

Considering the above points, we have 

tan (180° - θ)  =  - tan θ

Problem 4 :

Evaluate :

csc (180° - θ)

Solution :

To evaluate csc (180° - θ), we have to consider the following important points. 

(i)  (180° - θ) will fall in the II nd quadrant. 

(ii)  When we have 180°, "csc" will not be changed as "sec"

(iii)  In the II nd quadrant, the sign of "csc" is positive. 

Considering the above points, we have 

csc (180° - θ)  =  csc θ

Problem 6 :

Evaluate :

cot (180° - θ)

Solution :

To evaluate cot (180° - θ), we have to consider the following important points. 

(i)  (180° - θ) will fall in the II nd quadrant. 

(ii)  When we have 180°, "cot" will not be changed as "tan"

(iii)  In the II nd quadrant, the sign of "cot" is negative. 

Considering the above points, we have 

cot (180° - θ)  =  - cot θ

Summary (180 Degree Minus Theta)

sin (180° - θ)  =  sin θ

cos (180° - θ)  =  - cos θ

tan (180° - θ)  =  - tan θ

csc (180° - θ)  =  csc θ

sec (180° - θ)  =  - sec θ

cot (180° - θ)  =  - cot θ

Apart from the stuff given in this section, if you need any other stuff in math, please use our google custom search here.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Angle Bisector Theorem Worksheet

    Jan 26, 22 01:48 AM

    Angle Bisector Theorem Worksheet

    Read More

  2. Angle Bisector Theorem Proof

    Jan 26, 22 12:58 AM

    Angle Bisector Theorem Proof (Internally and Externally) - Step by step explanation

    Read More

  3. How to Find HCF and LCM Easily

    Jan 25, 22 02:08 AM

    How to Find HCF and LCM Easily - Concept - Examples

    Read More