Translating a sentence or statement into an algebraic equation is an important stuff which is much required to solve word problems in math.
Let us see, how to translate the information given in a word problem into an algebraic expression or equation in the following examples.
Example 1 :
Example 2 :
Example 3 :
Example 4 :
Example 5 :
Problem :
The age of a father is thrice the sum of the ages of his two sons and 5 years hence his age will be twice the sum of their ages. Find the present age of the father.
Solution :
Step 1 :
Let us understand the information given.
There are two information given in the question.
1. The age of the father is thrice the sum of the ages of his two sons. (At present)
2. After 5 years, his age would be twice the sum of their ages. (After 5 years)
Step 2 :
Target of the question : Present age of the father
Step 3 :
Introduce required variables for the information given in the question.
Let x be the present age of the father.
Let y be the sum of present ages of two sons.
Clearly, the value of x to be found.
Because that is the target of the question.
Step 4 :
Translate the given information as mathematical equation using x and y.
First information :
The age of the father is thrice the sum of the ages of his two sons.
Translation (i) :
The Age of the father -----> x
is -----> =
Thrice the sum of the ages of his two sons -----> 3y
Equation related to the first information using x and y is
x = 3y -----(1)
Second Information :
After 5 years, his age would be twice the sum of their ages.
Translation (ii) :
Age of the father after 5 years -----> (x + 5)
After 5 years :
Sum of the ages of his two sons -----> y + 5 + 5 = y + 10
(Here we have added 5 two times.The reason is there are two sons)
Twice the sum of ages of two sons -----> 2(y + 10)
would be -----> =
Equations related to the second information using x and y is
x + 5 = 2(y + 10)
Simplify.
x + 5 = 2y + 20
Subtract 2y and 5 from each side.
x - 2y = 15 -----(2)
Step 5 :
Solve (1) and (2) to find the value of the unknown.
Substitute 3y for x in (2).
(2)-----> 3y - 2y = 15
y = 15
Substitute 15 for y in (1).
(1)-----> x = 3(15)
x = 45
Therefore, the present age of the father is 45 years.
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
WORD PROBLEMS
Word problems on simple equations
Word problems on linear equations
Word problems on quadratic equations
Area and perimeter word problems
Word problems on direct variation and inverse variation
Word problems on comparing rates
Converting customary units word problems
Converting metric units word problems
Word problems on simple interest
Word problems on compound interest
Word problems on types of angles
Complementary and supplementary angles word problems
Markup and markdown word problems
Word problems on mixed fractions
One step equation word problems
Linear inequalities word problems
Ratio and proportion word problems
Word problems on sets and Venn diagrams
Pythagorean theorem word problems
Percent of a number word problems
Word problems on constant speed
Word problems on average speed
Word problems on sum of the angles of a triangle is 180 degree
OTHER TOPICS
Time, speed and distance shortcuts
Ratio and proportion shortcuts
Domain and range of rational functions
Domain and range of rational functions with holes
Graphing rational functions with holes
Converting repeating decimals in to fractions
Decimal representation of rational numbers
Finding square root using long division
L.C.M method to solve time and work problems
Translating the word problems in to algebraic expressions
Remainder when 2 power 256 is divided by 17
Remainder when 17 power 23 is divided by 16
Sum of all three digit numbers divisible by 6
Sum of all three digit numbers divisible by 7
Sum of all three digit numbers divisible by 8
Sum of all three digit numbers formed using 1, 3, 4
Sum of all three four digit numbers formed with non zero digits
Sum of all three four digit numbers formed using 0, 1, 2, 3
Sum of all three four digit numbers formed using 1, 2, 5, 6
©All rights reserved. onlinemath4all.com
May 23, 22 01:59 AM
Exponential vs Linear Growth Worksheet
May 23, 22 01:59 AM
Linear vs Exponential Growth - Concept - Examples
May 23, 22 01:34 AM
SAT Math Questions on Exponential vs Linear Growth