# TIME SPEED AND DISTANCE SHORTCUTS

## Distance, Time and Speed - Formulas ## Time, Speed and Distance Shortcuts

Shortcut 1 :

Let the speed be given in km per hour.

If we want to convert it in to meter per second, then we have to multiply the given speed by 5/18.

Example :

108 km/hr  =  108 ⋅ 5/18 meters/sec

108 km/hr  =  30 meters/sec

Shortcut 2 :

Let the speed be given in meter per sec.

If we want to convert it in to km per hour, then we have to multiply the given speed by 18/5.

Example :

35 meters/sec  =  35 ⋅ 18/5 kms/hr

35 meters/sec  =  126 kms/hr

Shortcut 3 :

Let the speeds of two vehicles be in the ratio a : b.

Then, the ratio of the time taken by the two vehicles to cover the same distance is b : a.

Example :

Let the ratio of speeds of two vehicles be 3 : 4.

Then, the ratio of the time taken by the two vehicles to cover the same distance is 4 : 3.

Shortcut 4 :

Let the speeds of two vehicles be in the ratio a : b.

Then, the ratio of distances covered by the two vehicles in the same amount of time is also a : b.

Example :

Let the ratio of speeds of two vehicles be 3 : 4. Each vehicle is given one hour time. Then, the distance covered by the two vehicles will be in the ratio 3 : 4.

Shortcut 5 :

Let A be twice as fast as B.

Then, the ratio of distances covered by A and B in the same amount of time will be 2 : 1.

Example :

Let A be twice as fast as B and each given 1 hour time.  If A covers 40 miles of distance, then B will cover 20 miles of distance.

Shortcut 6 :

Let the speed of a vehicle be increased or decreased in the ratio a : b.

Then the new speed  is

=  “b” of the original speed / a

More clearly, new speed  is

=  (“b”  original speed) / a

Example :

Michael travels at a speed of 63 miles per hour. If he reduces his speed in the ratio 9 : 8, find his new speed.

New speed  =  (8  63) / 9

New speed  =  56 miles per hour

Shortcut 7 :

A vehicle covers a particular distance at a speed “a” miles per hour and comes back to its original position at a speed of “b” miles per hour.

Then the average speed for the total distance covered is

= 2ab / (a + b) miles hour

Important condition :

The distance covered in “a” miles per hour and the distance covered in “b” miles per hour must be same.

Example :

Kevin covers 300 miles at the speed 45 mph and travels another 300 miles at the speed of 55 mph. Find the average speed for the whole journey.

Average speed for the whole journey is

=  (2 ⋅ 45 ⋅ 55) / (45 + 55)

=  4950 / 90

=  55 miles per hour If you would like to have the shortcuts explained above as pdf document,

If you would like to have practice problems on time, speed and distance,

If you would like to have worksheet on speed, distance and time, please click on the links given below.

Worksheet on Speed, Distance and Time - 2

Worksheet on Speed, Distance and Time - 3

Apart from the stuff given above, if you need any other stuff in math, please use our google custom search here.

If you have any feedback about our math content, please mail us :

v4formath@gmail.com

You can also visit the following web pages on different stuff in math.

WORD PROBLEMS

Word problems on simple equations

Word problems on linear equations

Algebra word problems

Word problems on trains

Area and perimeter word problems

Word problems on direct variation and inverse variation

Word problems on unit price

Word problems on unit rate

Word problems on comparing rates

Converting customary units word problems

Converting metric units word problems

Word problems on simple interest

Word problems on compound interest

Word problems on types of angles

Complementary and supplementary angles word problems

Double facts word problems

Trigonometry word problems

Percentage word problems

Profit and loss word problems

Markup and markdown word problems

Decimal word problems

Word problems on fractions

Word problems on mixed fractrions

One step equation word problems

Linear inequalities word problems

Ratio and proportion word problems

Time and work word problems

Word problems on sets and venn diagrams

Word problems on ages

Pythagorean theorem word problems

Percent of a number word problems

Word problems on constant speed

Word problems on average speed

Word problems on sum of the angles of a triangle is 180 degree

OTHER TOPICS

Profit and loss shortcuts

Percentage shortcuts

Times table shortcuts

Time, speed and distance shortcuts

Ratio and proportion shortcuts

Domain and range of rational functions

Domain and range of rational functions with holes

Graphing rational functions

Graphing rational functions with holes

Converting repeating decimals in to fractions

Decimal representation of rational numbers

Finding square root using long division

L.C.M method to solve time and work problems

Translating the word problems in to algebraic expressions

Remainder when 2 power 256 is divided by 17

Remainder when 17 power 23 is divided by 16

Sum of all three digit numbers divisible by 6

Sum of all three digit numbers divisible by 7

Sum of all three digit numbers divisible by 8

Sum of all three digit numbers formed using 1, 3, 4

Sum of all three four digit numbers formed with non zero digits

Sum of all three four digit numbers formed using 0, 1, 2, 3

Sum of all three four digit numbers formed using 1, 2, 5, 6

1. Click on the HTML link code below.

Featured Categories

Math Word Problems

SAT Math Worksheet

P-SAT Preparation

Math Calculators

Quantitative Aptitude

Transformations

Algebraic Identities

Trig. Identities

SOHCAHTOA

Multiplication Tricks

PEMDAS Rule

Types of Angles

Aptitude Test 