sin C + sin D = 2 sin (C+D)/2 cos (C-D)/2
sin C - sin D = 2 cos (C+D)/2 sin (C-D)/2
cos C + cos D = 2 cos (C+D)/2 cos (C-D)/2
cos C - cos D = 2 sin (C+D)/2 sin (C-D)/2
Example 1 :
Express
sin 4A + sin 2A
in the form of product.
Solution :
Given expression sin 4A + sin 2A exactly matches with
sin C+ sin D = 2 sin (C+D)/2 cos (C-D)/2
Here C = 4A and D = 2A
sin 4A + sin 2A = 2 sin (4A+2A)/2 cos (4A-2A)/2
= 2 sin (6A/2) cos (2A/2)
= 2 sin 3A cos A
Example 2 :
Express
sin 5A - sin 3A
in the form of product.
Solution :
Given expression sin 5A - sin 3A exactly matches with
sin C - sin D 2 cos (C+D)/2 sin (C-D)/2
Here C = 5A and D = 3A
sin 5A - sin 3A = 2 cos (5A+3A)/2 sin (5A-3A)/2
= 2 sin (8A/2) cos (2A/2)
= 2 sin 4A cos A
Example 3 :
Express
cos 3A + cos 7A
in the form of product.
Solution :
Given expression cos 3A + cos 7A exactly matches with
cos C + cos D = 2 cos (C+D)/2 cos (C-D)/2
Here C = 3A and D = 7A
cos 3A + cos 7A = 2 cos (3A+7A)/2 cos (3A-7A)/2
= 2 sin (10A/2) cos (-4A/2)
= 2 sin 5A cos(-2A)
= 2 sin 5A cos 2A
Example 4 :
Evaluate
cos 15° - cos 75°
Solution :
cos C - cos D = -2 sin (C+D)/2 sin (C- D)/2
cos 15° - cos 75° = -2 sin (15°+75°)/2 sin (15°-75°)/2
= -2 sin (90°)/2 sin (-60°)/2
= -2 sin 45° sin (-30°)
= 2 (1/√2)(-1/2)
= -1/√2
Example 5 :
Evaluate
sin 75° + sin 15°
Solution :
sin C + sin D = 2 sin (C+D)/2 cos (C- D)/2
sin 75° + sin 15° = 2 sin (75°+15°)/2 cos (75°-15°)/2
= 2 sin (90°)/2 cos (60°)/2
= 2 sin 45° cos (30°)
= 2 (1/√2)(√3/2)
= √3/√2
Example 6 :
Prove that
(cos 4t - cos 2t)/(sin 4t + sin 2t) = - tant
Solution :
(cos 4t - cos 2t)/(sin 4t + sin 2t)
cos 4t - cos 2t = -2 sin (4t+2t)/2 sin (4t-2t)/2
cos 4t - cos 2t = -2 sin 3t sin t ----(1)
sin 4t + sin 2t = 2 sin (4t+2t)/2 cos (4t-2t)/2
sin 4t + sin 2t = 2 sin3t cost ---(2)
(1)/(2)
= -2 sin 3t sin t / 2 sin3t cost
= -sint/cost
= - tant
Hence proved
Example 7 :
Simplify the given expression.
(cos 3A - cos 11A) / (sin 9A + sin 5A)
Solution :
= (cos 3A cos 11A) / (sin 9A + sin 5A)
cos C - cos D = -2 sin (C + D)/2 sin (C - D)/2
C = 3A and D = 11A
= -2 sin (3A + 11A)/2 sin (3A - 11A)/2
= -2 sin (14A/2) sin (- 8A/2)
= 2 sin 7A sin 4A -------(1)
sin C + sin D = 2 sin (C + D)/2 cos (C - D)/2
Here C = 9A and D = 5A
sin 9A + sin 5A = 2 sin (9A + 5A)/2 cos (9A - 5A)/2
= 2 sin (14A/2) cos (4A/2)
= 2 sin 7A cos 2A -------(2)
(1)/(2)
= (2 sin 7A sin 4A) / (2 sin 7A cos 2A)
= sin 4A/cos 2A
= sin 2(2A)/cos 2A
= 2sin 2A cos 2A / cos 2A
= 2 sin 2A
So, the answer is 2 sin 2A.
Example 8 :
Simplify the given expression.
(cos4x - cos6x) / (sin 6x - sin4x)
Solution :
= (cos 4x - cos 6x) / (sin 6x - sin 4x)
cos C - cos D = -2 sin (C + D)/2 sin (C - D)/2
C = 4x and D = 6x
= -2 sin (4x + 6x)/2 sin (4x - 6x)/2
= -2 sin (10x/2) sin (- 2x/2)
= 2 sin 5x sin x -------(1)
sin C - sin D = 2 cos (C + D)/2 sin (C - D)/2
Here C = 6x and D = 4x
sin 6x - sin4x = 2 sin (6x + 4x)/2 cos (6x - 4x)/2
= 2 sin (10x/2) cos (2x/2)
= 2 sin 5x cos x -------(2)
(1)/(2)
= (2 sin 5x sin x) / (2 sin 5x cos x)
= sin x/cos x
= tan x
Example 9 :
Complete the identity
sin θ [sin(4θ) + sin 6θ)] =
Solution :
= sin θ [sin 4θ + sin 6θ] ----(1)
sin C + sin D = 2 sin (C + D)/2 cos (C - D)/2
Here C = 4θ and D = 6θ
sin 4θ + sin 6θ = 2 sin (4θ + 6θ)/2 cos (4θ - 6θ)/2
= 2 sin (10θ/2) cos (- 2θ/2)
= 2 sin (5θ) cos (- θ)
= 2 sin 5θ cos θ
By applying the above, we get
= sin θ [2 sin 5θ cos θ]
= sin 5θ (2 sin θ cos θ)
= sin 5θ sin θ
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
May 11, 25 12:34 AM
May 10, 25 09:56 AM
May 10, 25 12:14 AM