SPECIAL SERIES EXAMPLES

Subscribe to our ā–¶ļø YouTube channel šŸ”“ for the latest videos, updates, and tips.

Special series are the series which are special in some way. 

Some of the special series are : 

(i) Sum of first ā€˜n’ natural numbers

1 + 2 + 3 + ............ + n  =  n(n + 1)/2

(ii) Sum of first ā€˜n’ odd natural numbers.

1 + 3 + 5 + ............ + (2n-1)  =  n2

(iii) Sum of squares of first ā€˜n’ natural numbers.

12 + 22 + 32 + ............ + n2  =  n(n + 1)(2n + 1)/6

(iv) Sum of cubes of first ā€˜n’ natural numbers.

13 + 23 + 33 + ............ + n3  =  [n(n + 1)/2]2

Example 1 :

If 1 + 2 + 3 + .......+ k = 325 , then find 13 +23 + 33 +......+ k3.

Solution :

Given that :

1 + 2 + 3 + ...........+ k = 325

13 +23 + 33 +......+ k=  [k(k+1)/2]2

  =  (Sum of k natural numbers)2

  =  3252

  =  105625

Example 2 :

If 13 + 23 + 33 +............+ k3 = 44100 then find 1 + 2 + 3 +......+k .

Solution :

Given that 

 13 + 23 + 33 +............+ k3 = 44100

 [k(k + 1)/2]2  =  44100

 [k(k + 1)/2]  =  āˆš44100

 [k(k + 1)/2]  =  210

1 + 2 + 3 + ......... + k  =  210

Example 3 :

How many terms of the series 13 + 23 + 33 +............  should be taken to get the sum 14400?

Solution :

Sn  =  14400

[n(n + 1)/2]2  =  14400

[n(n + 1)/2]  =  āˆš14400

[n(n + 1)/2]  =  120

n2 + n  =  240

n2 + n - 240  =  0

(n + 16)(n - 15)  =  0

n = -16, 15

Hence the required number of terms is 15.

Example 4 :

The sum of the squares of the first n natural numbers is 285, while the sum of their cubes is 2025. Find the value of n.

Solution :

12 + 22 + 32 +............ + n2  =  285

13 + 23 + 33 +............ + n3  =  2025 

By applying the value of n(n + 1)/2  =  45 

45[(2n + 1)/3]  =  285

(2n + 1)/3  =  285/45

(2n + 1)/3  =  57/9

(2n + 1)  =  57/3

6n + 3  =  57

6n  =  57 - 3  

6n  =  54

n = 9

Example 5 :

Rekha has 15 square colour papers of sizes 10 cm, 11 cm, 12 cm,…, 24 cm. How much area can be decorated with these colour papers?

Solution :

Required area

102 + 112 + 122 + .............+ 242

  =  (12 + 22 + 32 + .........+ 242) - (12 + 22 + 32 + ..........+ 92)

  =  [24(24 + 1)(2(24) + 1)/6] -  [9(9 + 1)(2(9) + 1)/6]

  =  [24(25)(49)/6] -  [9(10)(19)/6]

  =  4900 - 285

  =  4615 cm2

Example 6 :

Find the sum of the series (23 āˆ’ 1) + (43 āˆ’33) + (63 āˆ’53)+....... to (i) n terms (ii) 8 terms

Solution :

=  (23 āˆ’ 1) + (43 āˆ’ 33) + (63 āˆ’ 53)+.......

First numbers are even and second numbers are odd.

(i)  n terms

General term of the given series  =  (2n)3 āˆ’ (2n - 1)3

  =  8n3 - [(2n)3 - 3(2n)2 (1) + 3(2n)(1) - 13]

  =  8n3 - [8n3 - 12n2 + 6n - 1]

  =  8n3 - 8n3 + 12n2 - 6n + 1

  =  12n2 - 6n + 1

  =  [12n(n +1)(2n + 1)/6] - 6[n(n + 1)/2] + n

  =  2n(n + 1)(2n + 1) - 3n(n + 1) + n

  =  2n(2n2 + n + 2n + 1) - 3n2 - 3n + n

  =  4n3 + 6n2 + 2n - 3n2 - 3n + n

  =  4n3 + 3n2

Hence the sum of n terms 4n3 + 3n2

(ii) 8 terms

  =  4n3 + 3n2

n = 8

  =  4(8)3 + 3(8)2

  =  2048 + 192

  =  2240

Subscribe to our ā–¶ļø YouTube channel šŸ”“ for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. SAT Math Practice

    Dec 05, 25 04:04 AM

    satmathquestions1.png
    SAT Math Practice - Different Topics - Concept - Formulas - Example problems with step by step explanation

    Read More

  2. 10 Hard SAT Math Questions (Part - 37)

    Dec 03, 25 07:02 AM

    digitalsatmath411.png
    10 Hard SAT Math Questions (Part - 37)

    Read More

  3. Factorial Problems and Solutions

    Dec 02, 25 09:27 AM

    Factorial Problems and Solutions

    Read More