SUBSTITUTION METHOD IN INTEGRATION

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

In this page substitution method in integration we are going see where we need to use this method in integration.

In this method we need to change the function which is defined one variable to another variable. If we have limits then we have to change that too.

Now let us see some example problems to understand this topic.

Problem 1 :

Integrate cos x/(1+sin x)

Solution :

=  ∫[cos x/(1 + sin x)] dx

Let U = 1+sin x

Differentiate with respect to x on both sides

du  =  cos x dx

∫ [cos x/(1+sin x)] dx  =  ∫ [cos x dx/(1+sin x)]

=  ∫ du/u

=  ∫ (1/u) du

=  log u + C

=  log (1+sin x) + C

Problem 2 :

Integrate (6x + 5)/√(3x2+5x+6)

Solution :

=  ∫ [(6x + 5)/√(3x²+5x+6)] dx

Let U = 3x2 + 5x + 6

Differentiate with respect to x on both sides

du = (6x+5) dx

=  ∫ (6x+5) dx/√(3x2+5x+6)

=  ∫du/√u

=  ∫ u^(-1/2) du

=  u^[(-1/2) + 1]/[(-1/2) + 1] + C

=  u^[(-1 + 2)/2]/[(-1 + 2)/2] + C

=  u^(1/2)/(1/2) + C

=  2 √u + C

=  2 √(3x2+5x+6) + C

Problem 3 :

Integrate cosec x

Solution :

=  ∫ cosec x dx

To solve this problem we have to multiply and divide by (cosec x - cot x)

=  ∫ cosec x (cosec x - cot x)/(cosec x - cot x) dx

Let U = (cosec x - cot x)

Differentiate with respect to x on both sides

du = - cosec x cot x - (- cosec² x)dx

du = - cosec x cot x + cosec² x)dx

du =   cosec²x- cosec x cot x dx

=  ∫ (cosec²x - cosec x cot x) dx /(cosec x - cot x)

=  ∫ du/u

=  ∫ (1/u) du

=  log u + C

=  log (cosec x - cot x) + C

Problem 4 :

Integrate x5 (1 + x6)7

Solution :

Let t = 1 + x⁶

differentiate with respect to x

dt  =  6 x⁵ dx

dt/6  =  x⁵ dx

 x⁵ dx  =  dt/6

=  ∫ x⁵ (1 + x⁶)⁷ dx

=  ∫ t⁷ (dt/6)

=  (1/6) t⁷ dt

=  (1/6) [t(7+1)/(7+1)] + C

=  (1/6) (t8/8) + C

=  (1/48) t8 + C

=  t8/48 + C    

= (1 + x⁶)⁸/48 + C

Problem 5 :

Integrate (2Lx + m)/(Lx² + mx + n)

Solution :

Let t  =  (Lx2+mx+n)

differentiate with respect to x

dt  =  (2Lx + m) dx

=  ∫ (dt/t)

=  log t + C

=  log (Lx² + mx + n) + C

Problem 6 :

Integrate (4ax + 2b)/(ax2 + bx + c)10

Solution :

t  =  ax2+bx+c

differentiate with respect to x

dt  =  2ax+b

= ∫(4ax+2b)/(ax2+bx+c)10 dx

now we are going to take 2 from the numerator

=  ∫ 2 (2ax+2b)/(ax2+bx+c)10 dx

= ∫2 (dt/t10)

=  ∫2 t-10 dt

=  2t(-10+1)/(-10+1) + C

=  2t-9/(-9) + C

=  (-2/9) (ax2 + bx + c)^(-9) + C

=  [-2/9(ax2+bx+c)9] + C

Problem 7 :

∫ 3t2 (t3 + 4)5 dt

Solution :

∫3t2 (t3 + 4)5 dt

Let u = t3 + 4

du = (3t2 + 0) dt

du = 3tdt

∫ 3t2 (t3 + 4)5 dt = ∫u5 du

= u6/6 + C

= (t3 + 4)6 / 6 + C

Problem 8 :

√(4x - 5) dx

Solution :

√(4x - 5) dx

Let t = 4x - 5

dt = 4 dx

dx = (1/4) dt

√(4x - 5) dx = √t (1/4) dt

= (1/4)√t dt

= (1/4) t1/2 dt

= (1/4) t(1/2) + 1 / [(1/2) + 1] + C

= (1/4) t(3/2) / (3/2) + C

= (1/4) t(3/2) x (2/3) + C

= (1/6) t(3/2) + C

= (1/6) (4x - 5)(3/2) + C

Problem 9 :

∫ t2 (t3 + 4)-1/2 dt

Solution :

t2 (t3 + 4)-1/2 dt

Let u = t3 + 4

du = 3t2 dt

t2 dt = (1/3) du

t2 (t3 + 4)-1/2 dx = ∫ u-1/2 (1/3) du

= (1/3)∫ u-1/2 du

Applying the value of u.

= (1/3) u 1/2/(1/2) + C

Problem 10 :

∫ sin10 x cos x dx

Solution :

∫ sin10 x cos x dx

Let sin x = t

cos x dx = dt

∫ sin10 x cos x dx = ∫ t10 dt

= t11/11 + C

Applying the value of t.

= sin11 x / 11 + C

Problem 11 :

∫ (sin x/cos5 x) dx

Solution :

∫ (sin x/cos5 x) dx

Let cos x = t

-sin x dx = dt

sin x dx = -dt

∫ (sin x/cos5 x) dx = ∫ (-dt/t5)

= -∫ (1/t5) dt

= - ∫t-5 dt

= - (t-5 + 1) / (-5 + 1) + C

= - (t-4) / (-4) + C

= - (t-4) / (-4) + C

= - 1/4t4 + C

Applying the value of t, we get

= (- 1/4)cos4x + C

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact Us  |  Privacy Policy

©All rights reserved. onlinemath4all.com

onlinemath4all_official_badge.png

Recent Articles

  1. 10 Hard SAT Math Questions (Part - 41)

    Dec 24, 25 07:58 PM

    digitalsatmath423.png
    10 Hard SAT Math Questions (Part - 41)

    Read More

  2. ASTC Formula in Trigonometry

    Dec 23, 25 11:34 PM

    astc1
    ASTC Formula in Trigonometry - Concepts - Examples and Solved Problems

    Read More

  3. Coin Tossing Probability

    Dec 23, 25 11:29 PM

    Coin Tossing Probability - Concept - Sample Space - Formula - Solved Problems

    Read More