STANDARD EQUATION OF A PARABOLA

Given :

∙ Fixed point (F)

∙ Fixed line or directrix (l)

∙ Eccentricity (e = 1)

∙ Moving point P(x, y)

Construction :

∙ Plot the fixed point F and draw the fixed line ‘l’.

∙ Drop a perpendicular (FZ) from F to l.

∙ Draw a perpendicular bisector to FZ and treat it as y-axis.

∙ Let V(0, 0) be the origin.

∙ Drop a perpendicular (PM) from P to l.

∙ The known points are F(a, 0), Z(-a, 0) and M is (-a, y).

By the definition of a conic,

FP/PM  =  e  =  1

FP/PM  =  1

FP  =  PM

Square both sides.

FP2  =  PM2

(x - a)2 + (y - 0)2  =  (x + a)2 + (y - y)2

x2 - 2ax + a+ y2  =  x2 + 2ax + a2

Subtract x2 and a2 from each side.

- 2ax + y2  =  2ax

Add 2ax to each side.

y2  =  4ax

This is the standard equation of the parabola with vertex at origin.

Graph of y2  =  4ax :

If the vertex is other then origin, say (h, k), then

(y - k)2  =  4a(x - h)

Other Standard Parabolas

1. Open leftward : y2  =  -4ax [a > 0]

2. Open upward : x2  =  4ay [a > 0]

3. Open downward : x2  =  -4ay [a > 0]

Solved Problems

Use the information provided to write the standard equation of each parabola.

Problem 1 :

Vertex at origin, Focus (0, 1)

Solution :

Plot the vertex (0, 0) and focus (0, 1) on the xy-plane.

The parabola is open up with vertex at origin.

Standard equation of a parabola that opens up with vertex at origin :

x2  =  4ay

Distance between the vertex and focus is 1 unit.

That is, a = 1.

x2  =  4(1)y

x2  =  4y

Problem 2 :

Vertex at origin, Focus (2, 0)

Solution :

Plot the vertex (0, 0) and focus (2, 0) on the xy-plane.

The parabola is open to the right with vertex at origin.

Standard equation of a parabola that opens right with vertex at origin :

y2  =  4ax

Distance between the vertex and focus is 2 units.

That is, a = 2.

y2  =  4(2)x

y2  =  8x

Problem 3 :

Vertex at (1, 2), Focus (1, -1)

Solution :

Plot the vertex (1, 2) and focus (1, -1) on the xy-plane.

The parabola is open down with vertex at (1, 2).

Standard equation of a parabola that opens down with vertex at (h, k) :

(x - k)2  =  -4a(y - h)

Vertex (h, k) = (1, 2).

(x - 1)2  =  -4a(y - 2)

Distance between the vertex and focus is 3 units.

That is, a = 3.

(x - 1)2  =  -4(3)(y - 2)

(x - 1)2  =  -12(y - 2)

Problem 4 :

Vertex at (2, -1), Focus (-1, -1)

Solution :

Plot the vertex (2, -1) and focus (-1, -1) on the xy-plane.

The parabola is open to the left with vertex at (2, -1).

Standard equation of a parabola that opens left with vertex at (h, k) :

(y - k)2  =  -4a(x - h)

Vertex (h, k) = (2, -1).

(y + 1)2  =  -4a(x - 2)

Distance between the vertex and focus is 3 units.

That is, a = 3.

(y + 1)2  =  -4(3)(x - 2)

(y + 1)2  =  -12(x - 2)

Apart from the stuff given above, if you need any other stuff in math, please use our google custom search here.

If you have any feedback about our math content, please mail us :

v4formath@gmail.com

We always appreciate your feedback.

You can also visit the following web pages on different stuff in math.

WORD PROBLEMS

Word problems on simple equations

Word problems on linear equations

Word problems on quadratic equations

Algebra word problems

Word problems on trains

Area and perimeter word problems

Word problems on direct variation and inverse variation

Word problems on unit price

Word problems on unit rate

Word problems on comparing rates

Converting customary units word problems

Converting metric units word problems

Word problems on simple interest

Word problems on compound interest

Word problems on types of angles

Complementary and supplementary angles word problems

Double facts word problems

Trigonometry word problems

Percentage word problems

Profit and loss word problems

Markup and markdown word problems

Decimal word problems

Word problems on fractions

Word problems on mixed fractrions

One step equation word problems

Linear inequalities word problems

Ratio and proportion word problems

Time and work word problems

Word problems on sets and venn diagrams

Word problems on ages

Pythagorean theorem word problems

Percent of a number word problems

Word problems on constant speed

Word problems on average speed

Word problems on sum of the angles of a triangle is 180 degree

OTHER TOPICS

Profit and loss shortcuts

Percentage shortcuts

Times table shortcuts

Time, speed and distance shortcuts

Ratio and proportion shortcuts

Domain and range of rational functions

Domain and range of rational functions with holes

Graphing rational functions

Graphing rational functions with holes

Converting repeating decimals in to fractions

Decimal representation of rational numbers

Finding square root using long division

L.C.M method to solve time and work problems

Translating the word problems in to algebraic expressions

Remainder when 2 power 256 is divided by 17

Remainder when 17 power 23 is divided by 16

Sum of all three digit numbers divisible by 6

Sum of all three digit numbers divisible by 7

Sum of all three digit numbers divisible by 8

Sum of all three digit numbers formed using 1, 3, 4

Sum of all three four digit numbers formed with non zero digits

Sum of all three four digit numbers formed using 0, 1, 2, 3

Sum of all three four digit numbers formed using 1, 2, 5, 6