# SQUARES OF NUMBERS

## About "Squares of numbers"

Squares of numbers :

When a number is multiplied by itself we say that the number can be squared.

It is denoted by a number raised to the power 2.

For example :

(i) 3 ⋅ 3  =  32

(ii) 5 5  =  52

In example (ii) 52 is read as 5 to the power of 2 (or) 5 raised to the power 2 (or) 5 squared. 25 is known as the square of 5.

Similarly, 49 and 81 are the squares of 7 and 9 respectively.

In this section, we are going to learn a few methods of squaring numbers.

Perfect Square :

The numbers 1, 4, 9, 16, 25, g are called perfect squares or square numbers as

1 = 12, 4 = 22, 9 = 32, 16 = 42 and so on.

A number is called a perfect square if it is expressed as the square of a number.

Let us look into some example problems based on the above concept.

Example 1 :

Find the perfect square numbers between

(i) 10 and 20 (ii) 50 and 60 (iii) 80 and 90.

Solution :

(i) The perfect square number between 10 and 20 is 16.

(ii) There is no perfect square number between 50 and 60.

(iii) The perfect square number between 80 and 90 is 81.

Example 2 :

By observing the unit’s digits, which of the numbers 3136, 867 and 4413 can not be perfect squares?

Solution :

Since 6 is in units place of 3136, there is a chance that it is a perfect square.

867 and 4413 are surely not perfect squares as 7 and 3 are the unit digit of these numbers

Example 3 :

Write down the unit digits of the squares of the following numbers:

(i) 24              (ii) 78          (iii) 35

Solution :

(i) The square of 24 = 24 × 24. Here 4 is in the unit place.

So, we have 4 = 16.

Hence 6 is in the unit digit of square of 24.

(ii) The square of 78 = 78 × 78. Here 8 is in the unit place.

So, we have 8 8  =  64

Hence 4 is in the unit digit of square of 78.

(ii) The square of 35 = 35 × 35. Here 5 is in the unit place.

So, we have 5 5  =  25

Hence 5 is in the unit digit of square of 35.

Example 4 :

Find the square of 3/8

Solution :

The square of (3/8)  =  (3/8)2

=  (3/8) ⋅ (3/8)

=  (3 ⋅ 3) / (8 ⋅ 8)

=  9/64

After having gone through the stuff given above, we hope that the students would have understood "Squares of numbers"

Apart from the stuff given above, if you want to know more about "Squares of numbers", please click here

Apart from the stuff given in this section, if you need any other stuff in math, please use our google custom search here.

If you have any feedback about our math content, please mail us :

v4formath@gmail.com

We always appreciate your feedback.

You can also visit the following web pages on different stuff in math.

WORD PROBLEMS

Word problems on simple equations

Word problems on linear equations

Word problems on quadratic equations

Algebra word problems

Word problems on trains

Area and perimeter word problems

Word problems on direct variation and inverse variation

Word problems on unit price

Word problems on unit rate

Word problems on comparing rates

Converting customary units word problems

Converting metric units word problems

Word problems on simple interest

Word problems on compound interest

Word problems on types of angles

Complementary and supplementary angles word problems

Double facts word problems

Trigonometry word problems

Percentage word problems

Profit and loss word problems

Markup and markdown word problems

Decimal word problems

Word problems on fractions

Word problems on mixed fractrions

One step equation word problems

Linear inequalities word problems

Ratio and proportion word problems

Time and work word problems

Word problems on sets and venn diagrams

Word problems on ages

Pythagorean theorem word problems

Percent of a number word problems

Word problems on constant speed

Word problems on average speed

Word problems on sum of the angles of a triangle is 180 degree

OTHER TOPICS

Profit and loss shortcuts

Percentage shortcuts

Times table shortcuts

Time, speed and distance shortcuts

Ratio and proportion shortcuts

Domain and range of rational functions

Domain and range of rational functions with holes

Graphing rational functions

Graphing rational functions with holes

Converting repeating decimals in to fractions

Decimal representation of rational numbers

Finding square root using long division

L.C.M method to solve time and work problems

Translating the word problems in to algebraic expressions

Remainder when 2 power 256 is divided by 17

Remainder when 17 power 23 is divided by 16

Sum of all three digit numbers divisible by 6

Sum of all three digit numbers divisible by 7

Sum of all three digit numbers divisible by 8

Sum of all three digit numbers formed using 1, 3, 4

Sum of all three four digit numbers formed with non zero digits

Sum of all three four digit numbers formed using 0, 1, 2, 3

Sum of all three four digit numbers formed using 1, 2, 5, 6