Subscribe to our ā¶ļø YouTube channel š“ for the latest videos, updates, and tips.
Special series are the series which are special in some way.
Some of the special series are :
(i) Sum of first ānā natural numbers
1 + 2 + 3 + ............ + n = n(n + 1)/2
(ii) Sum of first ānā odd natural numbers.
1 + 3 + 5 + ............ + (2n-1) = n2
(iii) Sum of squares of first ānā natural numbers.
12 + 22 + 32 + ............ + n2 = n(n + 1)(2n + 1)/6
(iv) Sum of cubes of first ānā natural numbers.
13 + 23 + 33 + ............ + n3 = [n(n + 1)/2]2
Example 1 :
If 1 + 2 + 3 + .......+ k = 325 , then find 13 +23 + 33 +......+ k3.
Solution :
Given that :
1 + 2 + 3 + ...........+ k = 325
13 +23 + 33 +......+ k3 = [k(k+1)/2]2
= (Sum of k natural numbers)2
= 3252
= 105625
Example 2 :
If 13 + 23 + 33 +............+ k3 = 44100 then find 1 + 2 + 3 +......+k .
Solution :
Given that
13 + 23 + 33 +............+ k3 = 44100
[k(k + 1)/2]2 = 44100
[k(k + 1)/2] = ā44100
[k(k + 1)/2] = 210
1 + 2 + 3 + ......... + k = 210
Example 3 :
How many terms of the series 13 + 23 + 33 +............ should be taken to get the sum 14400?
Solution :
Sn = 14400
[n(n + 1)/2]2 = 14400
[n(n + 1)/2] = ā14400
[n(n + 1)/2] = 120
n2 + n = 240
n2 + n - 240 = 0
(n + 16)(n - 15) = 0
n = -16, 15
Hence the required number of terms is 15.
Example 4 :
The sum of the squares of the first n natural numbers is 285, while the sum of their cubes is 2025. Find the value of n.
Solution :
12 + 22 + 32 +............ + n2 = 285
13 + 23 + 33 +............ + n3 = 2025
By applying the value of n(n + 1)/2 = 45
45[(2n + 1)/3] = 285
(2n + 1)/3 = 285/45
(2n + 1)/3 = 57/9
(2n + 1) = 57/3
6n + 3 = 57
6n = 57 - 3
6n = 54
n = 9
Example 5 :
Rekha has 15 square colour papers of sizes 10 cm, 11 cm, 12 cm,ā¦, 24 cm. How much area can be decorated with these colour papers?
Solution :
Required area
102 + 112 + 122 + .............+ 242
= (12 + 22 + 32 + .........+ 242) - (12 + 22 + 32 + ..........+ 92)
= [24(24 + 1)(2(24) + 1)/6] - [9(9 + 1)(2(9) + 1)/6]
= [24(25)(49)/6] - [9(10)(19)/6]
= 4900 - 285
= 4615 cm2
Example 6 :
Find the sum of the series (23 ā 1) + (43 ā33) + (63 ā53)+....... to (i) n terms (ii) 8 terms
Solution :
= (23 ā 1) + (43 ā 33) + (63 ā 53)+.......
First numbers are even and second numbers are odd.
(i) n terms
General term of the given series = (2n)3 ā (2n - 1)3
= 8n3 - [(2n)3 - 3(2n)2 (1) + 3(2n)(1) - 13]
= 8n3 - [8n3 - 12n2 + 6n - 1]
= 8n3 - 8n3 + 12n2 - 6n + 1
= 12n2 - 6n + 1
= [12n(n +1)(2n + 1)/6] - 6[n(n + 1)/2] + n
= 2n(n + 1)(2n + 1) - 3n(n + 1) + n
= 2n(2n2 + n + 2n + 1) - 3n2 - 3n + n
= 4n3 + 6n2 + 2n - 3n2 - 3n + n
= 4n3 + 3n2
Hence the sum of n terms 4n3 + 3n2
(ii) 8 terms
= 4n3 + 3n2
n = 8
= 4(8)3 + 3(8)2
= 2048 + 192
= 2240
Subscribe to our ā¶ļø YouTube channel š“ for the latest videos, updates, and tips.
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
Dec 05, 25 04:04 AM
Dec 03, 25 07:02 AM
Dec 02, 25 09:27 AM