SOLVING SYSTEMS OF EQUATIONS GRAPHICALLY WORKSHEET

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Problem 1 : 

Solve the following system of equations by graphically. 

x + y - 4  =  0 

3x - y  =  0

Problem 2 : 

Solve the following system of equations by graphically. 

3x - y - 3  =  0 

x - y - 3  =  0

Solutions

Problem 1 : 

Solve the following system of equations by graphically. 

x + y - 4  =  0 

3x - y  =  0

Solution :

Step 1 :

Let us re-write the given equations in slope-intercept form  (y = mx + b). 

y  =  - x + 4

(slope is -1 and y-intercept is 4) 

y  =  3x 

(slope is 3 and y-intercept is 0) 

Based on slope and y-intercept, we can graph the given equations. 

Step 2 :

Find the point of intersection of the two lines. It appears to be (1, 3). Substitute to check if it is a solution of both equations.

x + y - 4  =  0 

1 + 3 - 4  =  0  ?

4 - 4  =  0  ?

0  =  0  True

3x - y  =  0 

3(1) - 3  =  0  ?

3 - 3  =  0  ?

0  =  0  True

Because the point (1, 3) satisfies both the equations, the solution of the system is (1, 3).  

Problem 2 : 

Solve the following system of equations by graphically. 

3x - y - 3  =  0 

x - y - 3  =  0

Solution :

Step 1 :

Let us re-write the given equations in slope-intercept form. 

y  =  3x - 3

(slope is 3 and y-intercept is -3) 

y  =  x - 3 

(slope is 1 and y-intercept is -3) 

Based on slope and y-intercept, we can graph the given equations. 

Step 2 :

Find the point of intersection of the two lines. It appears to be (0, -3). Substitute to check if it is a solution of both equations.

3x - y - 3  =  0 

3(0) - (-3) - 3  =  0  ?

0 + 3 - 3  =  0  ?

0  =  0  True

x - y - 3  =  0

0 - (-3) - 3  =  0  ?

3 - 3  =  0  ?

0  =  0  True

Because the point (0, -3) satisfies both the equations, the solution of the system is (0, -3).  

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact Us  |  Privacy Policy

©All rights reserved. onlinemath4all.com

onlinemath4all_official_badge1.png

Recent Articles

  1. Dilation Transformation

    Feb 07, 26 08:30 PM

    dilation.png
    Dilation Transformation - Concept - Rule - Examples with step by step explanation

    Read More

  2. SAT Math Practice Problems Hard

    Feb 07, 26 07:37 PM

    digitalsatmath423.png
    SAT Math Practice Problems Hard

    Read More

  3. SAT Math Practice Hard Questions

    Feb 07, 26 08:28 AM

    SAT Math Practice Hard Questions

    Read More