SOLVING SYSTEM OF EQUATIONS USING SUBSTITUTION

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

(a) Use one of the equations in the system of equations to solve for one of the variables in terms of the other variables.

(b) Substitute the expression obtained in the previous step into the other equations, resulting in a new system of equations with one less variable and one less equation.

(c) Repeat the first two steps until you can solve the remaining system. 

(d) Then substitute the values you have found into the previously obtained equations to get the complete solutions.

Example 1 :

Find all solutions to the given system of equations.

x2 − 2y2 = 3

x + 2y = 1

Solution :

x2 − 2y2 = 3   -------(1)

x + 2y = 1   -------(2)

x  =  1 - 2y

Substitute x = 1 - 2y in (1)

(1 - 2y)2 - 2y2  =  3

1 + 4y2 - 4y - 4y =  3

-4y  =  3 - 1

-4y  =  2

y  =  2/(-4)  =  -1/2

x  =  1 - 2(-1/2)

  =  1 + 1

x  =  2

So, the solution is

(2, -1/2)

Example 2 :

Find all solutions to the given system of equations.

(1/x) − (1/y)  =  2

4x + y = 3 

Solution :

(1/x) − (1/y)  =  2  ----(1)

4x + y = 3  ----(2)

y  =  3 - 4x

Substitute y = 3 - 4x in (1)

 (1/x) - (1/(3 - 4x))  =  2

(3 - 4x - x)/(x(3-4x))  =  2

(3 - 5x)/(3x - 4x2)  =  2

3 - 5x  =  2(3x - 4x2)

3 - 5x  =  6x - 8x2

8x2 - 6x - 5x + 3  =  0

8x2 - 11x + 3  =  0

(8x - 3) (x - 1)  =  0

x  =  3/8 and x  =  1

If x  =  3/8

y  =  3 - 4(3/8)

y  =  3 - (3/2)

y  =  (6 - 3)/2

y  =  3/2

If x  =  1

y  =  3 - 4(1)

y  =  3 - 4

y  =  -1

So, the solutions are

(3/8, 3/2) and (1, -1)

Example 3 :

Find all solutions to the given system of equations.

x2 + 3y2 = 5

x − 3y = 2

Solution :

x2 + 3y2 = 5  ----(1)

x − 3y = 2  ----(2)

x  =  2 + 3y

Substitute x = 2 + 3y in (1)

(2 + 3y)2 + 3y2  =  5

4 + 9y2 + 2(2)(3y) + 3y2  =  5

12y2 + 12y + 4 - 5  =  0

12y2 + 12y - 1  =  0

a  =  12, b  =  12 and c  =  -1

y  =  -b ± √(b2 - 4ac) / 2a

y  =  -12 ± √(122 - 4(12) (-1) / 2(12)

y  =  -12 ± √(144 + 48) / 24

y  =  (-12 ± √192) / 24

y  =  (-12 ± 8√3) / 24

y  =  4(-3 ± 2√3) / 24

y  =  (-3 ± 2√3) / 6

y  =  (-3 + 2√3)/6   (or)  y  =  (-3 - 2√3)/6

y  =  (-3 + 2√3)/6 

x  =  2 + 3y

x  =  2 + 3(-3 + 2√3)/6 

x  =  2 + (-3 + 2√3)/2

  =  (4 - 3 + 2√3)/2

  =  (1 + 2√3)/2

y  =  (-3 - 2√3)/6 

x  =  2 + 3y

x  =  2 + 3(-3 - 2√3)/6 

x  =  2 + (-3 - 2√3)/2

  =  (4 - 3 - 2√3)/2

  =  (1 - 2√3)/2

So, the solutions are

((1 + 2√3)/2, (-3 + 2√3)/6) and ((1 - 2√3)/2, (-3 - 2√3)/6)

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact Us  |  Privacy Policy

©All rights reserved. onlinemath4all.com

onlinemath4all_official_badge1.png

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 1)

    Feb 05, 26 09:37 AM

    digitalsatmath1.png
    Digital SAT Math Problems and Solutions (Part - 1)

    Read More

  2. AP Precalculus Problems and Solutions

    Feb 05, 26 06:41 AM

    precalculus.png
    AP Precalculus Problems and Solutions

    Read More

  3. SAT Math Preparation with Hard Questions

    Feb 05, 26 05:30 AM

    SAT Math Preparation with Hard Questions

    Read More