SOLVING SYSTEM OF EQUATIONS USING SUBSTITUTION

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

(a) Use one of the equations in the system of equations to solve for one of the variables in terms of the other variables.

(b) Substitute the expression obtained in the previous step into the other equations, resulting in a new system of equations with one less variable and one less equation.

(c) Repeat the first two steps until you can solve the remaining system. 

(d) Then substitute the values you have found into the previously obtained equations to get the complete solutions.

Example 1 :

Find all solutions to the given system of equations.

x2 − 2y2 = 3

x + 2y = 1

Solution :

x2 − 2y2 = 3   -------(1)

x + 2y = 1   -------(2)

x  =  1 - 2y

Substitute x = 1 - 2y in (1)

(1 - 2y)2 - 2y2  =  3

1 + 4y2 - 4y - 4y =  3

-4y  =  3 - 1

-4y  =  2

y  =  2/(-4)  =  -1/2

x  =  1 - 2(-1/2)

  =  1 + 1

x  =  2

So, the solution is

(2, -1/2)

Example 2 :

Find all solutions to the given system of equations.

(1/x) − (1/y)  =  2

4x + y = 3 

Solution :

(1/x) − (1/y)  =  2  ----(1)

4x + y = 3  ----(2)

y  =  3 - 4x

Substitute y = 3 - 4x in (1)

 (1/x) - (1/(3 - 4x))  =  2

(3 - 4x - x)/(x(3-4x))  =  2

(3 - 5x)/(3x - 4x2)  =  2

3 - 5x  =  2(3x - 4x2)

3 - 5x  =  6x - 8x2

8x2 - 6x - 5x + 3  =  0

8x2 - 11x + 3  =  0

(8x - 3) (x - 1)  =  0

x  =  3/8 and x  =  1

If x  =  3/8

y  =  3 - 4(3/8)

y  =  3 - (3/2)

y  =  (6 - 3)/2

y  =  3/2

If x  =  1

y  =  3 - 4(1)

y  =  3 - 4

y  =  -1

So, the solutions are

(3/8, 3/2) and (1, -1)

Example 3 :

Find all solutions to the given system of equations.

x2 + 3y2 = 5

x − 3y = 2

Solution :

x2 + 3y2 = 5  ----(1)

x − 3y = 2  ----(2)

x  =  2 + 3y

Substitute x = 2 + 3y in (1)

(2 + 3y)2 + 3y2  =  5

4 + 9y2 + 2(2)(3y) + 3y2  =  5

12y2 + 12y + 4 - 5  =  0

12y2 + 12y - 1  =  0

a  =  12, b  =  12 and c  =  -1

y  =  -b ± √(b2 - 4ac) / 2a

y  =  -12 ± √(122 - 4(12) (-1) / 2(12)

y  =  -12 ± √(144 + 48) / 24

y  =  (-12 ± √192) / 24

y  =  (-12 ± 8√3) / 24

y  =  4(-3 ± 2√3) / 24

y  =  (-3 ± 2√3) / 6

y  =  (-3 + 2√3)/6   (or)  y  =  (-3 - 2√3)/6

y  =  (-3 + 2√3)/6 

x  =  2 + 3y

x  =  2 + 3(-3 + 2√3)/6 

x  =  2 + (-3 + 2√3)/2

  =  (4 - 3 + 2√3)/2

  =  (1 + 2√3)/2

y  =  (-3 - 2√3)/6 

x  =  2 + 3y

x  =  2 + 3(-3 - 2√3)/6 

x  =  2 + (-3 - 2√3)/2

  =  (4 - 3 - 2√3)/2

  =  (1 - 2√3)/2

So, the solutions are

((1 + 2√3)/2, (-3 + 2√3)/6) and ((1 - 2√3)/2, (-3 - 2√3)/6)

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. SAT Math Practice

    Dec 05, 25 04:04 AM

    satmathquestions1.png
    SAT Math Practice - Different Topics - Concept - Formulas - Example problems with step by step explanation

    Read More

  2. 10 Hard SAT Math Questions (Part - 37)

    Dec 03, 25 07:02 AM

    digitalsatmath411.png
    10 Hard SAT Math Questions (Part - 37)

    Read More

  3. Factorial Problems and Solutions

    Dec 02, 25 09:27 AM

    Factorial Problems and Solutions

    Read More