SOLVING QUADRATIC EQUATIONS BY QUADRATIC FORMULA 

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

The standard form of a quadratic equation is

ax2 + bx + c = 0

Quadratic Formula :

The above formula can be used to solve a quadratic equation in standard form. If the given quadratic equation is not in standard form, convert it to standard form and use the above formula and solve.

Solve each of the following quadratic equations using the quadratic formula.

Example 1 :

x2 – 5x – 24 = 0

Solution :

Comparing the given equation with ax2 + bx + c = 0, we get

a = 1, b = -5, c = -24

Quadratic Formula :

Substitute a = 1, b = -5 and c = -24.

x = 8  or  -3

Example 2 :

x2 – 7x + 12 = 0

Solution :

From the given quadratic equation,

a = 1, b = -7, c = 12

Substitute the above values into the quadratic formula.

x = 4  or  3

Example 3 :

x2 – 2x - 5  =  0

Solution :

From the given quadratic equation,

a = 1, b = -2, c = -5

Substitute the above values into the quadratic formula.

Example 4 :

15x2 – 11x + 2  =  0

Solution :

From the given quadratic equation,

a = 15, b = -11, c = 2

Substitute the above values into the quadratic formula.

Example 5 :

x + ¹⁄ₓ = 2½

Solution :

x + ¹⁄ₓ = 2½

x + ¹⁄ₓ⁵⁄₂

Multiply both sides by 2x.

2x[x + ¹⁄ₓ] = 2x[⁵⁄₂]

2x2 + 2x(¹⁄ₓ) = 5x

2x2 + 2 = 5x

2x2 - 5x + 2 = 0

From the given quadratic equation,

a = 2, b = -5, c = 2

Substitute the above values into the quadratic formula.

Example 6 :

(x + 3)2 - 81 = 0

Solution :

(x + 3)2 - 81 = 0

(x + 3)(x + 3) - 81 = 0

x2 + 3x + 3x + 9 - 81 = 0

x2 + 6x - 72 = 0

From the given quadratic equation,

a = 1, b = 6, c = -72

Substitute the above values into the quadratic formula.

x = 6  or  -12

Example 7 :

Solution :

4x2 - 9x - 43 = 0

From the given quadratic equation,

a = 4, b = -9, c = -43

Substitute the above values into the quadratic formula.

Example 8 :

 a(x2 + 1) = x(a2 + 1)

Solution :

 a(x2 + 1) = x(a2 + 1)

 ax2 + a = xa2 + x

 ax2 + a - xa2 - x = 0

 ax2 - xa2 - x + a = 0

 ax2 - (a2 + 1)x + a = 0

From the given quadratic equation,

a = a, b = -(a2 + 1), c = a

Substitute the above values into the quadratic formula.

Example 9 :

3a2x2 - abx - 2b2 = 0   

Solution :

From the given quadratic equation,

a = 3a2, b = -ab, c = -2b2

Substitute the above values into the quadratic formula.

Example 10 :

36x2 – 12ax + (a2 - b2) = 0

Solution :

From the given quadratic equation,

a = 36, b = -12a, c = a2 - b2

Substitute the above values into the quadratic formula.

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact Us  |  Privacy Policy

©All rights reserved. onlinemath4all.com

onlinemath4all_official_badge1.png

Recent Articles

  1. AP Precalculus Problems and Solutions

    Feb 09, 26 08:43 AM

    precalculus.png
    AP Precalculus Problems and Solutions

    Read More

  2. Dilation Transformation

    Feb 07, 26 08:30 PM

    dilation.png
    Dilation Transformation - Concept - Rule - Examples with step by step explanation

    Read More

  3. SAT Math Practice Problems Hard

    Feb 07, 26 07:37 PM

    digitalsatmath423.png
    SAT Math Practice Problems Hard

    Read More