SOLVING QUADRATIC EQUATIONS BY GRAPHING EXAMPLES

Subscribe to our ▢️ YouTube channel πŸ”΄ for the latest videos, updates, and tips.

First, we have to draw the graph for the given quadratic equation. To solve the second quadratic equation using the first, we have to subtract the second equation from the first equation. So we get a straight line.

We can determine roots of a quadratic equation graphically by choosing appropriate parabola and intersecting it with a desired straight line.

(i) If the straight line intersects the parabola at two distinct points, then the x coordinates of those points will be the roots of the given quadratic equation.

(ii) If the straight line just touch the parabola at only one point, then the x coordinate of the common point will be the single root of the quadratic equation.

(iii) If the straight line doesn’t intersect or touch the parabola then the quadratic equation will have no real roots.

Example 1 :

Draw the graph of y = x+ 3x - 4 and hence solve x2 + 3x - 4 = 0

Solution :

Now, let us draw the graph of y = x+ 3x - 4

x

-4

-3

-2

-1

0

1

2

3

4

x2

16

9

4

1

0

1

4

9

16

3x

-12

-9

-8

-3

0

3

6

9

12

-4

-4

-4

-4

-4

-4

-4

-4

-4

-4

y

0

-4

-8

-6

-4

0

6

14

24

Points to be plotted :

(-4, 0) (-3, -4) (-2, -8) (-1, -6) (0, -4) (1, 0) (2, 6) (3, 14) (4, 24)

To find the x-coordinate of the vertex of the parabola, we may use the formula x = -b/2a

x = -3/2(1)  =  -3/2

By applying x = -3/2, we get the value of y.

y = (-3/2)+ 3(-3/2) - 4

y = 9/4 - (9/4) - 4

y = -4

Vertex (-3/2, -4)

y  =  x+ 3x - 4 ------(1)

0  =  x+ 3x - 4  ------(2)

(1) - (2)

      y  =  x+ 3x - 4 ------(1)

      0  =  x+ 3x - 4  ------(2)

    (-)     (-)   (-)  (-)

    -------------------

       y = 0 

y = 0 means x-axis. The parabola intersects the x-axis at two points-4 and 1. 

Hence the solutions are -4 and 1.

Example 2 :

Draw the graph of y = x2 βˆ’5x βˆ’6 and hence solve x2 βˆ’5x βˆ’14 = 0

Solution :

Now, let us draw the graph of y = x2 - 5x - 6

x

-4

-3

-2

-1

0

1

2

3

4

x2

16

9

4

1

0

1

4

9

16

-5x

20

15

10

5

0

-5

-10

-15

-20

-6

-6

-6

-6

-6

-6

-6

-6

-6

-6

y

30

18

8

0

-6

-10

-12

-12

-10

Points to be plotted :

(-4, 30) (-3, 18) (-2, 8) (-1, 0) (0, -6) (1, -10) (2, -12) (3, -12) (4, -10)

To find the x-coordinate of the vertex of the parabola, we may use the formula x = -b/2a

x = -(-5)/2(1)  =  5/2

By applying x = 5/2, we get the value of y.

y = (5/2)2 - 5(5/2) - 6

y = 25/4 - (25/2) - 6

y = (25 - 50 - 24)/4

y = -49/4

Vertex (5/2, -49/4)

y  =  x2 βˆ’5x βˆ’6 ------(1)

0  =  x2 βˆ’5x βˆ’14  ------(2)

(1) - (2)

     y  =  x2 βˆ’5x βˆ’6 ------(1)

     0  =  x2 βˆ’5x βˆ’14  ------(2)

    (-)     (-)  (+)  (+)

    -------------------

       y = 8 

Hence the parabola and the line intersect at two points -2 and 7 on the x-axis.

Hence the solutions are -2 and 7.

Example 3 :

Draw the graph of y = 2x2 βˆ’ 3x βˆ’ 5 and hence solve 2x2 βˆ’ 4x βˆ’ 6 = 0

Solution :

Let us draw the graph of y = 2x2 βˆ’ 3x βˆ’ 5

x

-2

-1

0

1

2

3

4

2x2

8

2

0

2

8

18

32

-3x

6

3

0

-3

-6

-9

-12

-5

-5

-5

-5

-5

-5

-5

-5

y

9

0

-5

-6

-3

4

15

Points to be plotted :

 (-2, 9) (-1, 0) (0, -5) (1, -6) (2, -3) (3, 4) (4, 15)

To find the x-coordinate of the vertex of the parabola, we may use the formula x = -b/2a

x = -(-3)/2(2)  =  3/4

By applying x = 3/4, we get the value of y.

y = 2(3/4)2 βˆ’ 3(3/4) βˆ’ 5

y = 18/16 - (12/4) - 5

y = (18 - 48 - 80)/16

y = -110/16

Vertex (3/4, -110/16)

y  =  2x2 βˆ’ 3x βˆ’ 5 ------(1)

0  =  2x2 βˆ’ 4x βˆ’ 6  ------(2)

(1) - (2)

      y  =  2x2 βˆ’ 3x βˆ’ 5 ------(1)

      0  =  2x2 βˆ’ 4x βˆ’ 6  ------(2)

      (-)     (-)  (+)  (+)

    -------------------

       y  =  x + 1 

By drawing a line in the same graph, we get

The parabola and a line intersect at two points -1 and 3. Hence the solutions are -1 and 3.

Example 4 :

Draw the graph of y = (x βˆ’ 1)(x + 3) and hence solve x2 βˆ’ x βˆ’ 6 = 0

Solution :

y = (x βˆ’ 1)(x + 3) 

y = x2 + 3x - x - 3

y = x2 + 2x - 3

x

-2

-1

0

1

2

3

4

x2

4

1

0

1

4

9

16

2x

-4

-2

0

2

4

6

8

-3

-3

-3

-3

-3

-3

-3

-3

y

-3

-4

-3

0

5

12

21

Points to be plotted :

 (-2, -3) (-1, -4) (0, -3) (1, 0) (2, 5) (3, 12) (4, 21)

To find the x-coordinate of the vertex of the parabola, we may use the formula x = -b/2a

x = -2/2(1)  =  -1

By applying x = -1, we get the value of y.

y = (-1)2 + 2(-1) - 3

y = 1 - 2 - 3

y = -4

Vertex (-1, -4)

y  =   x2 + 2x - 3 ------(1)

0  =  x2 βˆ’ x βˆ’ 6  ------(2)

(1) - (2)

     y  =   x2 + 2x - 3 ------(1)

      0  =  x2 βˆ’ x βˆ’ 6  ------(2)

      (-)    (-)  (+)  (+)

    -------------------

       y  =  3x + 3

 y = 3(x + 1)

By drawing a line in the same graph, we get

The parabola and a line intersect at two points -2 and 7. Hence the solutions are -2 and 7.

Subscribe to our ▢️ YouTube channel πŸ”΄ for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact Us  |  Privacy Policy

Β©All rights reserved. onlinemath4all.com

onlinemath4all_official_badge.png

Recent Articles

  1. 10 Hard SAT Math Questions (Part - 40)

    Dec 25, 25 08:30 AM

    digitalsatmath422.png
    10 Hard SAT Math Questions (Part - 40)

    Read More

  2. 10 Hard SAT Math Questions (Part - 41)

    Dec 24, 25 07:58 PM

    digitalsatmath423.png
    10 Hard SAT Math Questions (Part - 41)

    Read More

  3. ASTC Formula in Trigonometry

    Dec 23, 25 11:34 PM

    astc1
    ASTC Formula in Trigonometry - Concepts - Examples and Solved Problems

    Read More