SOLVING PROBLEMS WITH PATTERNS

Example 1 :

For the following matchstick pattern, find the number of matches M required to make the 

(a) 8th figure

(b) nth figure

Solution :

By observing the figures

Number of matchstick in the 1st figure = 4.

Number of matchstick in the 2nd figure = 10.

Number of matchstick in the 3rd figure = 16.

Number of matchsticks in every figure is 2 less than the multiple of 6.

So, creating formula for this

number of matchstick in nth figure = 6n - 2

(a) using the formula

n = 8

Number of match sticks in 8th figure :

= 6(8) - 2

= 48 - 2

= 46

(b) Number of matchstick in nth figure = 6n - 2.

Example 2 :

Consider the pattern :

S1 = 1/(1×2)

S2 = 1/(1×2) + 1/(2×3)

S3 = 1/(1×2) + 1/(2×3) + 1/(3×4)

.....................

a) Find the values of S1, S2, S3, and S4

b) write down the value of :

(i) S10  (ii) Sn

Solution :

S1 = 1/(1 x 2) = 1/2

S2 = 1/(1 x 2) + 1/(2 x 3) = 1/2 + 1/6 = 4/6 = 2/3

S3 = 1/(1x2) + 1/(2x3) + 1/(3x4)

= 1/2 + 1/6 + 1/12

= (6 + 2 + 1)/12

= 9/12

= 3/4

Observing the results it is in the form n/(n + 1)

So,

Sn = n/(n + 1)

(where n is natural number)

(a)  

If n = 1,

S1 = 1/(1 + 1)

S1 = 1/2

If n = 2,

S2 = 2/(2 + 1)

S2 = 2/3

If n = 3,

S3 = 3/(3 + 1)

S3 = 3/4

If n = 4,

S4 = 4/(4 + 1)

S4 = 4/5

(b) (i) If n = 10,

S10 = 10/(10 + 1)

S10 = 10/11

Sn = n/(n + 1)

(ii) Sn = n/(n + 1)

Example 3 :

Consider the pattern :

S1 = 12

 S2 = 12 + 22

 S2 = 12 + 22 + 32, …………

a) Check that the formula

Sn = [n(n + 1)(2n + 1)]/6

is correct for n = 1, 2, 3 and 4.

b) Assuming the formula in a is always true, find the sum of

1+ 2+ 3+ 4+ 52+ ………… + 1002 

which is the sum of the squares of the first one hundred integers.

Solution :

(a) When n  =  1,

Sn = [n(n + 1)(2n + 1)]/6

S1 = 1(1 + 1)(2 + 1)]/6

S1 = 1

It can be written as 12.

When n = 2,

S2 = [2(2 + 1)(4 + 1)]/6

S2 = 5

It can be written as 12 + 22.

When n = 3,

S3 = [3(3 + 1)(6 + 1)]/6

S2 = 84

It can be written as 12 + 22 + 32.

Hence its verified.

(ii) Given :

1+ 2+ 3+ 4+ 5+ ………… + 1002 

Here, n = 100.

Sn = [n(n + 1)(2n + 1)]/6

S100 = [100(100 + 1)(200 + 1)]/6

S100 = 338350

Example 4 :

Consider the pattern :

N1 = 13 

N2 = 13 + 23

 N3 = 13 + 23 + 33, …………

a) Verify that the formula

Nn = [n2(n + 1)2]/4

is correct for n = 1, 2, 3 and 4

b) Use the above formula to find the sum of

13 + 23 + 33 + 43 + ………… + 503

c) Find the sum : 23 + 43 + 63 + 83 + ………… + 1003

Solution :

(a) When n = 1,

Nn = [n2(n + 1)2]/4

N1 = [12(1 + 1)2]/4

N1 = 1

It can be written as 13.

When n = 2,

N2 = [22(2 + 1)2]/4

N2 = 9

It can be written as 13 + 23.

When n = 3,

N3 = [32(3 + 1)2]/4

N3 = 36

It can be written as 13 + 23 + 33.

Hence, its verified.

(b) 13 + 23 + 33 + 43 + ………… + 503

here, n = 50.

Sn = n2(n + 1)2]/4

S50 = (50)2(50 + 1)2]/4

S50 = 1625625

c) 23 + 43 + 63 + 83 + ………… + 1003

Factoring 23 from the series.

=  23(13 + 23 + 33 + 43 + ………… + 503)

= 23(1625625)

= 8(1625625)

= 13005000

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Trigonometry Even and Odd Iidentities

    May 04, 24 12:15 AM

    ASTCnew.png
    Trigonometry Even and Odd Iidentities

    Read More

  2. SOHCAHTOA Worksheet

    May 03, 24 08:50 PM

    sohcahtoa39
    SOHCAHTOA Worksheet

    Read More

  3. Trigonometry Pythagorean Identities

    May 02, 24 11:43 PM

    Trigonometry Pythagorean Identities

    Read More