SOLVING EXPONENTIAL EQUATIONS WITH QUADRATICS

Solve for x :

Example 1 :

9x + 3  =  4(3x)

Solution :

9x + 3  =  4(3x)

(32)x + 3  =  4(3x)

(3x)2 + 3  =  4(3x)

By arranging terms, we get

(3x)2 – 4(3x) + 3  =  0

Let u  =  3x

u2 – 4u + 3  =  0

Now, we have the quadratic equation form,

u2 – 4u + 3  =  0

By factoring we get

(u – 1) (u – 3)  =  0

u  =  1 and u  =  3

Replace u  =  3x

So, 3x  =  1 or 3x  =  3

By using one to one property of exponential functions,

if bm  =  bn then m  =  n

3x  =  1

3x  =  30

x  =  0

3x  =  3

3x  =  31

x  =  1

So, the solution is {0, 1}

Example 2 :

4x – 10(2x) + 16  =  0

Solution :

4x – 10(2x) + 16  =  0

(22)x – 10(2x) + 16  =  0

(2x)2 – 10(2x) + 16  =  0

Let u  =  2x

u2 – 10u + 16  =  0

Now, we have the quadratic equation form,

u2 – 10u + 16  =  0

By factorization, we get

(u – 2) (u – 8)  =  0

u  =  2 and u  =  8

Replace u  =  2x

So, 2x  =  2 or 2x  =  8

By using one to one property of exponential functions,

2x  =  2 or 2x  =  23

x  =  1 or 3

So, the solution is {1 or 3}.

Example 3 :

4x + 2x  =  20

Solution :

4x + 2x  =  20

(22)x + 2x  =  20

(2x)2 + 2x - 20  =  0

Let u  =  2x

u2 + u - 20  =  0

By factorization, we get

(u – 4) (u + 5)  =  0

u  =  4 and u  =  -5

Replace u  =  2x

So, 2x  =  4 or 2x  =  -5

We taking only positive.

By using the one to one property of exponential functions,

2x  =  22

x  =  2

So, the solution is 2.

Example 4 :

9x + 3(3x) + 2  =  0

Solution :

9x + 3(3x) + 2  =  0

 (32)x + 3(3x) + 2  =  0

(3x)2 + 3(3x) + 2  =  0

Let u  =  3x

u2 + 3u + 2  =  0

By factorization, we get

(u + 1) (u + 2)  =  0

u  =  -1 and u  =  -2

Replace u  =  2x

So, 3x  =  -1 or 3x  =  -2

There are no values for x.

So, it has no solution.

Example 5 :

25x + 4(5x)  =  5

Solution :

25x + 4(5x)  =  5

(52)x + 4(5x)  =  5

(5x)2 + 4(5x) - 5  =  0

Let u  =  5x

u2 + 4u - 5  =  0

By factorization, we get

(u – 1) (u + 5)  =  0

u  =  1 and u  =  -5

Replace u  =  5x

So, 5x  =  1 or 5x  =  -5

We taking only positive.

Since a0  =  1

5x  =  1

x  =  0

So, the solution of x is 0

Example 6 :

25x  =  23(5x) + 50

Solution :

25x  =  23(5x) + 50

By combining like terms

 (52)x - 23(5x) – 50  =  0

(5x)2 - 23(5x) - 50  =  0

Let u  =  5x

u2 - 23u - 50  =  0

By factorization, we get

(u – 25) (u + 2)  =  0

u  =  25 and u  =  -2

Replace u  =  5x

So, 5x  =  25 or 5x  =  -2

We taking only positive.

5x  =  52

x  =  2

So, the solution of x is 2

Example 7 :

49x + 7  =  8(7x)

Solution :

49x + 7  =  8(7x)

(72)x + 7  =  8(7x)

(7x)2 + 7  =  8(7x)

By combining like terms,

(7x)2 – 8(7x) + 7  =  0

Let u  =  7x

u2 – 8u + 7  =  0

By factorization, we get

(u – 1) (u – 7)  =  0

u  =  1 and u  =  7

Replace u  =  7x

So, 7x  =  1 or 7x  =  7

7x  =  1 or 7x  =  7

x  =  0 or 1

So, the solution is {0 or 1}.

Example 8 :

64x + 8  =  6(8x)

Solution :

64x + 8  =  6(8x)

(82)x + 8  =  6(8x)

(8x)2 + 8  =  6(8x)

By combining like terms,

(8x)2 – 6(8x) + 8  =  0

Let u  =  8x

u2 – 6u + 8  =  0

By factorization, we get

(u – 2) (u – 4)  =  0

u  =  2 and u  =  4

Replace u  =  8x

So, 8x  =  2 or 8x  =  4

(23)x  =  2 or (23)x  =  4

23x  =  2 or 23x  =  22

By using the one to one property of exponential functions,

3x  =  1 or 3x  =  2

x  =  1/3 or x  =  2/3

So, the solution is {1/3 or 2/3}.

Example 9 :

If x and y are positive integers and 123 = 2x 3y, what is the value of x + y ?

Solution :

123 = 2x 3y

(22 ⋅ 31) = 2x 3y

x = 2 and y = 1

x + y = 2 + 1

= 3

So, the value of x + y is 3.

Example 10 :

If 2x 59nd y are positive integers and 123 = 2x 3y, what is the value of x + y ?

Solution :

123 = 2x 3y

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 154)

    Apr 30, 25 11:12 PM

    digitalsatmath187.png
    Digital SAT Math Problems and Solutions (Part - 154)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 153)

    Apr 29, 25 12:18 PM

    digitalsatmath185.png
    Digital SAT Math Problems and Solutions (Part - 153)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 152)

    Apr 28, 25 11:54 AM

    Digital SAT Math Problems and Solutions (Part - 152)

    Read More