# SOLVING EQUATIONS USING CROSS MULTIPLICATION METHOD

## About "Solving Equations Using Cross Multiplication Method"

Solving Equations Using Cross Multiplication Method :

Here we are going to see some example problems on solving equations using cross multiplication method.

## Solving Equations Using Cross Multiplication Method - Practice questions

Question 1 :

Solve by cross-multiplication method

(i)  8x − 3y = 12 ; 5x = 2y + 7

Solution :

8x − 3y - 12  =  0  -----(1)

5x - 2y - 7  =  0  -----(2)

x/(21 - 24)  =  y/(-60 + 56)  =  1/(-16 + 15)

x/(- 3)  =  y/(-4)  =  1/(-1)

x/(-3)  =   -1           y/(-4)  =  -1

x  =  3  and y  =  4

Hence the solution is (3, 4).

(ii)  6x + 7y - 11  =  0; 5x + 2y  =  13

Solution :

6x + 7y - 11  =  0 ------(1)

5x + 2y - 13  =  0 ------(2)

x/(-91 + 22)  =  y/(-55 + 78)  =  1/(12 - 35)

x/(-69)  =  y/(-23)  =  1/(-23)

x  =  -69/(-23)  =  3

y  =  -23/(-23)  =  1

Hence the solution is (3, 1).

(iii)  (2/x) + (3/y)  =  5, (3/x) - (1/y) + 9  =  0

Solution :

Let 1/x  =  a and 1/y  =  b

2a + 3b - 5  =  0 ------------(1)

3a - b + 9  =  0 ------------(2)

a/(27 - 5)   =  b/(-15 - 18)  =  1/(-2 - 9)

a/(22)   =  b/(33)  =  1/(-11)

a  =  22/(-11)  =  -2, b  =  33/(-11)  =  -3

x  =  -1/2, y  =  -1/3

Hence the solution is (-1/2, -1/3).

Question 2 :

Akshaya has 2 rupee coins and 5 rupee coins in her purse. If in all she has 80 coins totalling ₹ 220, how many coins of each kind does she have.

Solution :

Let "x" and "y"  number of 2 rupee and 5 rupee coins respectively.

x + y  =  80

2x + 5y  =  220

x + y - 80  =  0 ----------(1)

2x + 5y - 220  =  0 ----------(2)

x/(-220 + 400)  =  y/(-160 + 220)  =  1/(5 - 2)

x/(180)  =  y/(60)  =  1/(3)

x  =  180/3, y = 60/3

x  =  60, y = 20

Hence number of 2 rupee coin and 5 rupee coins are 60 and 20 respectively.

Question 3 :

It takes 24 hours to fill a swimming pool using two pipes. If the pipe of larger diameter is used for 8 hours and the pipe of the smaller diameter is used for 18 hours. Only half of the pool is filled. How long would each pipe take to fill the swimming pool.

Solution :

Let x and y be two pipes.

So in 1 hour quantity of water filled by pipe x is 1/x and that of pipe y is 1/y. The quantity of water filled by both pipes in one hour is 1/x + 1/y

It takes 24 hours by pipes to fill the pool

So, 1/x + 1/y = 1/24------------(1)

The quantity of water filled in 8 hours by pipe A = 8/A

The quantity of water filled in 18 hours by pipe B = 18/B

Given in the question half is filled so

8/x + 18/y = 1/2-------------(2)

From (1) and (2) we have,

a + b - (1/24)  =  0 -------------(3)

8 a + 18 b - (1/2)  =  0----------(4)

a/(-1/2 + 3/4)  =  b/(-1/3 + 1/2)  =  1/(18 - 8)

a/(-2 + 3)/4  =  b/(-2 + 3)/6)  =  1/(10)

a/(1/4)  =  b/(1/6)  =  1/10

a  =  1/40, b  =  1/60

x  =  40  and y  =  60

Hence larger pipe is taking 40 hours and smaller pipe is taking 60 hours.

After having gone through the stuff given above, we hope that the students would have understood, "Solving Equations Using Cross Multiplication Method"

Apart from the stuff given in this section if you need any other stuff in math, please use our google custom search here.

You can also visit our following web pages on different stuff in math.

WORD PROBLEMS

Word problems on simple equations

Word problems on linear equations

Algebra word problems

Word problems on trains

Area and perimeter word problems

Word problems on direct variation and inverse variation

Word problems on unit price

Word problems on unit rate

Word problems on comparing rates

Converting customary units word problems

Converting metric units word problems

Word problems on simple interest

Word problems on compound interest

Word problems on types of angles

Complementary and supplementary angles word problems

Double facts word problems

Trigonometry word problems

Percentage word problems

Profit and loss word problems

Markup and markdown word problems

Decimal word problems

Word problems on fractions

Word problems on mixed fractrions

One step equation word problems

Linear inequalities word problems

Ratio and proportion word problems

Time and work word problems

Word problems on sets and venn diagrams

Word problems on ages

Pythagorean theorem word problems

Percent of a number word problems

Word problems on constant speed

Word problems on average speed

Word problems on sum of the angles of a triangle is 180 degree

OTHER TOPICS

Profit and loss shortcuts

Percentage shortcuts

Times table shortcuts

Time, speed and distance shortcuts

Ratio and proportion shortcuts

Domain and range of rational functions

Domain and range of rational functions with holes

Graphing rational functions

Graphing rational functions with holes

Converting repeating decimals in to fractions

Decimal representation of rational numbers

Finding square root using long division

L.C.M method to solve time and work problems

Translating the word problems in to algebraic expressions

Remainder when 2 power 256 is divided by 17

Remainder when 17 power 23 is divided by 16

Sum of all three digit numbers divisible by 6

Sum of all three digit numbers divisible by 7

Sum of all three digit numbers divisible by 8

Sum of all three digit numbers formed using 1, 3, 4

Sum of all three four digit numbers formed with non zero digits

Sum of all three four digit numbers formed using 0, 1, 2, 3

Sum of all three four digit numbers formed using 1, 2, 5, 6