SOLVE THE EQUATION ELIMINATING ANY EXTRANEOUS SOLUTIONS

When we multiply or divide an equation by an expression containing variables, the resulting equation may have solutions that are not solutions of the original equation. These are extraneous solutions.

For this reason we must check each solution of the resulting equation in the original equation.

Example 1 :

Solve for x :

2x/(x - 1) + 1/(x - 3)  =   2/x2 - 4x + 3

Solution :

2x/(x - 1) + 1/(x - 3)  =   2/x2 - 4x + 3

Factoring the quadratic equation x2 - 4x + 3, we get factors as (x - 1) (x - 3).

2x/(x - 1) + 1/(x - 3)  =   2/(x - 1) (x - 3)  --(1)

2x(x - 3) + 1(x - 1)  =  2

2x2 - 6x + x - 1  =  2

2x2 - 5x - 1 - 2  =  0

2x2 - 5x - 3  =  0

(2x + 1) (x - 3)  =  0

2x + 1  =  0

x  =  -1/2

x - 3  =  0

 x  =  3

To check whether above values are solution or not, we apply the values in (1).

If x  =  -1/2, we get the defined value.

If x  =  3, we get undefined value. So, only x  =  -1/2 is a solution.

Example 2 :

Solve for x :

(x - 3)/x  +  3/(x + 2)  +  6/(x2 + 2x)  =  0

Solution :

(x - 3)/x  +  3/(x + 2)  +  6/(x2 + 2x)  =  0

(x - 3)/x  +  3/(x + 2)  +  6/x(x + 2)  =  0

Least common multiple is x (x + 2).

(x - 3)(x + 2) + 3x  +  6  =  0

x2 - x - 6 + 3x + 6  =  0

x2 + 2x  =  0

x(x + 2)  =  0

x  =  0  and x + 2  =  0

x  =  0 and x  =  -2

Substituting x  =  0 or x  =  -2 into the original equation results in the division is zero. So both of these numbers are extraneous solution. So the original equation has no solution.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Time and Work Problems

    Oct 20, 25 07:13 AM

    Time and Work Problems - Concept - Solved Problems

    Read More

  2. 10 Hard SAT Math Questions (Part - 30)

    Oct 17, 25 07:27 PM

    digitalsatmath397.png
    10 Hard SAT Math Questions (Part - 30)

    Read More

  3. 10 Hard SAT Math Questions (Part - 29)

    Oct 16, 25 06:04 AM

    10 Hard SAT Math Questions (Part - 29)

    Read More