# SOLVE INEQUALITIES

Solve inequalities :

An open sentence that contains the symbol <, >, ≤ or ≥  is called an inequality. Inequalities can be solved in the same way as equations.

## Inequality

In equation, we will have = (equal) sign.

In equation, we will have one of the following signs <, >, ≤ or

By solving the equation, we will get only one value as the solution.

By solving given inequality, we will get more than one solution that satisfies the given condition.

## Solve inequalities - Examples

Example 1 :

Solve each inequality. Then check your solution, and graph it on a number line.

x + 14 ≥ 18

Solution :

Step 1 :

x + 14 ≥ 18

Subtract 14 on both sides,

x + 14 - 14 ≥ 18 - 14

≥ 4

Step 2 :

To check the solution, we need to take any values greater than or equal to 4 and check whether it satisfies the condition or not.

Let us take x  =  5

Now we have to apply 5 instead of "x" in the given inequality.

5 + 14 ≥ 18

19 ≥ 18 (True)

Step 3 :

To graph the solution, we have to draw a number line and shade the portion which satisfies the given condition.

Example 2 :

Solve each inequality. Then check your solution, and graph it on a number line.

d + 5 ≤ 7

Solution :

Step 1 :

d + 5 ≤ 7

Subtract 5 on both sides,

d + 5 - 5 ≤ 7 - 5

d  ≤ 2

Step 2 :

To check the solution, we need to take any value less than or equal to 2 and check whether it satisfies the condition or not.

Let us take d  =  0

Now we have to apply 0 instead of "d" in the given inequality.

0 + 5 ≤ 7

5 ≤ 7 (True)

Step 3 :

To graph the solution, we have to draw a number line and shade the portion which satisfies the given condition.

Example 3 :

Solve each inequality. Then check your solution, and graph it on a number line.

-3  ≥  q - 7

Solution :

Step 1 :

-3  ≥  q - 7

-3 + 7  ≥  q - 7 + 7

7  ≥  q

If we flip the variable to the right side and value to the left side, then we have to change its original sign.

q ≤ 7

Step 2 :

To check the solution, we need to take any value lesser than or equal to 7 and check whether it satisfies the condition or not.

Let us take q  =  5

Now we have to apply 5 instead of "q" in the given inequality.

-3  ≥  5 - 7

-3  ≥  - 2 (True)

Step 3 :

To graph the solution, we have to draw a number line and shade the portion which satisfies the given condition.

Example 4 :

Solve each inequality. Then check your solution, and graph it on a number line.

2y  >  -8 + y

Solution :

Step 1 :

2y  >  -8 + y

Subtract y on both sides

2y - y  >  -8 + y - y

y  >  -8

Step 2 :

To check the solution, we need to take any value greater than -8.

Let us take y  =  -5

Now we have to apply -5 instead of "y" in the given inequality.

2(-5)  >  -8 - 5

-10 > -13 (True)

Step 3 :

To graph the solution, we have to draw a number line and shade the portion which satisfies the given condition.

Example 5 :

Solve each inequality. Then check your solution, and graph it on a number line.

3f < -3 + 2f

Solution :

Step 1 :

3f < -3 + 2f

Subtract 2f on both sides

3f - 2f  <  -3 + 2f - 2f

f  <  -3

Step 2 :

To check the solution, we need to take any value lesser than -2.

Let us take f  =  -2

Now we have to apply -2 instead of "f" in the given inequality.

3(-2) < -3 + 2(-2)

-6 < -3 - 4

-6 < -7 (True)

Step 3 :

To graph the solution, we have to draw a number line and shade the portion which satisfies the given condition.

After having gone through the stuff given above, we hope that the students would have understood "Solve inequalities".

Apart from the stuff given in this section, if you need any other stuff in math, please use our google custom search here.

WORD PROBLEMS

HCF and LCM  word problems

Word problems on simple equations

Word problems on linear equations

Algebra word problems

Word problems on trains

Area and perimeter word problems

Word problems on direct variation and inverse variation

Word problems on unit price

Word problems on unit rate

Word problems on comparing rates

Converting customary units word problems

Converting metric units word problems

Word problems on simple interest

Word problems on compound interest

Word problems on types of angles

Complementary and supplementary angles word problems

Double facts word problems

Trigonometry word problems

Percentage word problems

Profit and loss word problems

Markup and markdown word problems

Decimal word problems

Word problems on fractions

Word problems on mixed fractrions

One step equation word problems

Linear inequalities word problems

Ratio and proportion word problems

Time and work word problems

Word problems on sets and venn diagrams

Word problems on ages

Pythagorean theorem word problems

Percent of a number word problems

Word problems on constant speed

Word problems on average speed

Word problems on sum of the angles of a triangle is 180 degree

OTHER TOPICS

Profit and loss shortcuts

Percentage shortcuts

Times table shortcuts

Time, speed and distance shortcuts

Ratio and proportion shortcuts

Domain and range of rational functions

Domain and range of rational functions with holes

Graphing rational functions

Graphing rational functions with holes

Converting repeating decimals in to fractions

Decimal representation of rational numbers

Finding square root using long division

L.C.M method to solve time and work problems

Translating the word problems in to algebraic expressions

Remainder when 2 power 256 is divided by 17

Remainder when 17 power 23 is divided by 16

Sum of all three digit numbers divisible by 6

Sum of all three digit numbers divisible by 7

Sum of all three digit numbers divisible by 8

Sum of all three digit numbers formed using 1, 3, 4

Sum of all three four digit numbers formed with non zero digits

Sum of all three four digit numbers formed using 0, 1, 2, 3

Sum of all three four digit numbers formed using 1, 2, 5, 6