SIMPLIFYING SQUARE ROOT EXPRESSIONS WITH VARIABLES

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Key Concept

To simplify the square root expressions, write each term inside the radical as squares. 

We can get one term out of the square root for every two same terms multiplied inside the radical. 

Solved Examples

Example 1 :

Simplify :

√(16u4v3)

Solution : 

=  √(16u4v3)

=  √(42 ⋅ u⋅ u⋅ v⋅ v)

=  (4 ⋅ u ⋅ u ⋅ v)v

=  4u2vv

Example 2 :

Simplify :

√(147m3n3)

Solution : 

=  √(147m3n3)

=  √(3 ⋅ 72 ⋅ m⋅ m ⋅ n⋅ n)

=  (7 ⋅ m ⋅ n)√(3mn)

=  7mn√(3mn)

Example 3 :

Simplify :

√(75x2y)

Solution : 

=  √(75x2y)

=  √(3 ⋅ 52 ⋅ x⋅ y)

=  (5 ⋅ x)√(3y)

=  5x√(3y)

Example 4 :

Simplify :

6√(72x2)

Solution : 

=  6√(72x2)

=  6√(2 ⋅ 62 ⋅ x2)

=  (6 ⋅ 6 ⋅ x)√2

=  36x√2

Example 5 :

Simplify :

√(x2 + 2xy + y2)

Solution :

=  √(x2 + 2xy + y2)

Use algebraic identity (a + b)2  =  a2 + 2ab + b2.

=  √(x + y)2

=  x + y

Example 6 :

Simplify :

√(p2 - 2pq + q2)

Solution :

=  √(p2 - 2pq + q2)

Use algebraic identity (a - b)2  =  a2 - 2ab + b2.

=  √(p - q)2

=  p - q

Example 7 :

Simplify :

√[(x2 - y2)(x + y) / (x - y)]

Solution :

=  √[(x2 - y2)(x + y) / (x - y)]

Use algebraic identity a2 - b2  =  (a + b)(a - b).

=  √[(x + y)(x - y)(x + y) / (x - y)]

=  √[(x + y)(x + y)]

=  x + y

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact Us  |  Privacy Policy

©All rights reserved. onlinemath4all.com

onlinemath4all_official_badge1.png

Recent Articles

  1. SAT Math Practice Questions with Answers

    Feb 02, 26 05:50 AM

    digitalsatmath372.png
    SAT Math Practice Questions with Answers

    Read More

  2. Mastering the SAT Math

    Feb 02, 26 05:34 AM

    digitalsatmath373.png
    Mastering the SAT Math

    Read More

  3. SAT Math Practice Test with Answers

    Feb 02, 26 05:26 AM

    digitalsatmath376.png
    SAT Math Practice Test with Answers

    Read More