SIMPLIFYING SQUARE ROOT EXPRESSIONS WITH VARIABLES

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Key Concept

To simplify the square root expressions, write each term inside the radical as squares. 

We can get one term out of the square root for every two same terms multiplied inside the radical. 

Solved Examples

Example 1 :

Simplify :

√(16u4v3)

Solution : 

=  √(16u4v3)

=  √(42 ⋅ u⋅ u⋅ v⋅ v)

=  (4 ⋅ u ⋅ u ⋅ v)v

=  4u2vv

Example 2 :

Simplify :

√(147m3n3)

Solution : 

=  √(147m3n3)

=  √(3 ⋅ 72 ⋅ m⋅ m ⋅ n⋅ n)

=  (7 ⋅ m ⋅ n)√(3mn)

=  7mn√(3mn)

Example 3 :

Simplify :

√(75x2y)

Solution : 

=  √(75x2y)

=  √(3 ⋅ 52 ⋅ x⋅ y)

=  (5 ⋅ x)√(3y)

=  5x√(3y)

Example 4 :

Simplify :

6√(72x2)

Solution : 

=  6√(72x2)

=  6√(2 ⋅ 62 ⋅ x2)

=  (6 ⋅ 6 ⋅ x)√2

=  36x√2

Example 5 :

Simplify :

√(x2 + 2xy + y2)

Solution :

=  √(x2 + 2xy + y2)

Use algebraic identity (a + b)2  =  a2 + 2ab + b2.

=  √(x + y)2

=  x + y

Example 6 :

Simplify :

√(p2 - 2pq + q2)

Solution :

=  √(p2 - 2pq + q2)

Use algebraic identity (a - b)2  =  a2 - 2ab + b2.

=  √(p - q)2

=  p - q

Example 7 :

Simplify :

√[(x2 - y2)(x + y) / (x - y)]

Solution :

=  √[(x2 - y2)(x + y) / (x - y)]

Use algebraic identity a2 - b2  =  (a + b)(a - b).

=  √[(x + y)(x - y)(x + y) / (x - y)]

=  √[(x + y)(x + y)]

=  x + y

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact Us  |  Privacy Policy

©All rights reserved. onlinemath4all.com

Recent Articles

  1. AP Calculus BC Problems with Solutions

    Dec 20, 25 10:51 AM

    AP Calculus BC Problems with Solutions

    Read More

  2. AP Precalculus Problems and Solutions (Part - 1)

    Dec 20, 25 10:49 AM

    AP Precalculus Problems and Solutions (Part - 1)

    Read More

  3. AP Calculus AB Problems with Solutions (Part - 1)

    Dec 20, 25 10:49 AM

    apcalculusab1.png
    AP Calculus AB Problems with Solutions (Part - 1)

    Read More