SIMPLIFYING SQUARE ROOT EXPRESSIONS WITH VARIABLES

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Key Concept

To simplify the square root expressions, write each term inside the radical as squares. 

We can get one term out of the square root for every two same terms multiplied inside the radical. 

Solved Examples

Example 1 :

Simplify :

√(16u4v3)

Solution : 

=  √(16u4v3)

=  √(42 ⋅ u⋅ u⋅ v⋅ v)

=  (4 ⋅ u ⋅ u ⋅ v)v

=  4u2vv

Example 2 :

Simplify :

√(147m3n3)

Solution : 

=  √(147m3n3)

=  √(3 ⋅ 72 ⋅ m⋅ m ⋅ n⋅ n)

=  (7 ⋅ m ⋅ n)√(3mn)

=  7mn√(3mn)

Example 3 :

Simplify :

√(75x2y)

Solution : 

=  √(75x2y)

=  √(3 ⋅ 52 ⋅ x⋅ y)

=  (5 ⋅ x)√(3y)

=  5x√(3y)

Example 4 :

Simplify :

6√(72x2)

Solution : 

=  6√(72x2)

=  6√(2 ⋅ 62 ⋅ x2)

=  (6 ⋅ 6 ⋅ x)√2

=  36x√2

Example 5 :

Simplify :

√(x2 + 2xy + y2)

Solution :

=  √(x2 + 2xy + y2)

Use algebraic identity (a + b)2  =  a2 + 2ab + b2.

=  √(x + y)2

=  x + y

Example 6 :

Simplify :

√(p2 - 2pq + q2)

Solution :

=  √(p2 - 2pq + q2)

Use algebraic identity (a - b)2  =  a2 - 2ab + b2.

=  √(p - q)2

=  p - q

Example 7 :

Simplify :

√[(x2 - y2)(x + y) / (x - y)]

Solution :

=  √[(x2 - y2)(x + y) / (x - y)]

Use algebraic identity a2 - b2  =  (a + b)(a - b).

=  √[(x + y)(x - y)(x + y) / (x - y)]

=  √[(x + y)(x + y)]

=  x + y

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact Us  |  Privacy Policy

©All rights reserved. onlinemath4all.com

onlinemath4all_official_badge.png

Recent Articles

  1. US Common Core K-12 Curricum Algebra Solving Simple Equations

    Jan 07, 26 01:53 PM

    US Common Core K-12 Curricum Algebra Solving Simple Equations

    Read More

  2. 10 Hard SAT Math Questions (Part - 4)

    Jan 05, 26 06:56 PM

    digitalsatmath376.png
    10 Hard SAT Math Questions (Part - 4)

    Read More

  3. 10 Hard SAT Math Questions (Part - 3)

    Jan 05, 26 06:34 PM

    digitalsatmath378.png
    10 Hard SAT Math Questions (Part - 3)

    Read More