SIMPLIFYING RATIONAL EXPRESSIONS WORKSHEET

Simplify the following rational expression into their lowest forms.

(i)  (6x2+9x)/(3x2-12x)

(ii)  (x2+1)/(x4-1)

(iii)  (x3-1)/(x2+x+1)

(iv)  (x3-27)/(x2-9)

(v)  (x4+x2+1)/(x2+x+1)

(vi)  (x3+8)/(x4+4x2+16)

(vii)  (2x2+x-3)/(2x2+5x+3)

(viii)  (2x4-162)/(x2+9) (2x-6)

(ix)  [(x-3) (x2-5x+4)] / [(x-4) (x2-2x-3)]

(x)  [(x-8)(x2+5x-50)]/[(x+10)(x2-13x+40)]

(xi)  (4x2+9x+5)/(8x2+6x-5)

(i)  Solution :

(6x2+9x)/(3x2-12x)

Let f(x)  =  (6x2+9x)/(3x2-12x)

We may factor 3x from the numerator and denominator.

f(x)  =  3x(2x+3)/3x(x-4)

f(x)  =  (2x+3)/(x-4)

So, the value f(x) is (2x+3)/(x-4).

(ii)  Solution :

(x2+1)/(x4-1)

Let f(x)  =  (x2+1)/(x4-1)

f(x)  =  (x2+1)/((x2)2-(12)2)

Using the algebraic identity a2-b2, we may expand

a2-b2  =  (a+b)(a-b)

(x2)2-(12)2  =  (x2+1)(x2-1)

(x2)2-(12)2  =  (x2+1)(x+1)(x-1)

By applying factors in f(x), we get

f(x)  =  (x2+1)/(x2+1)(x+1)(x-1)

f(x)  =  1/(x+1)(x-1)

f(x)  =  1/(x2-1)

So, the value of f(x) is 1/(x2-1).

(iii)  Solution :

(x3-1)/(x2+x+1)

Let f(x)  =  (x3-1)/(x2+x+1)

Now we are going to use the following algebraic formula

a3-b3  =  (a-b) (a2+ab+b2)

x3-13  =  (x-1)(x2+x+1)

By applying factors in f(x), we get

f(x)  =  (x-1)(x2+x+1)/(x2+x+1)

f(x)  =  (x-1)

So, the value of f(x) is (x-1).

(iv)  Solution :

(x3-27)/(x2-9)

Let f(x)  =  (x3-27)/(x2-9)

f(x)  =  (x3-33)/(x2-32)

Now we are going to use the following algebraic formula

a3-b3  =  (a-b) (a2+ab+b2)

a2-b2  =  (a+b) (a-b)

x3-3 =  (x-3)(x2+3x+9)

x2-3 =  (x+3) (x-3)

By applying the factors in f(x), we get

f(x)  =  [(x-3)(x2+3x+9)]/[(x+3) (x-3) ]

f(x)  =  (x2+3x+9)/(x+3)

So, the value of f(x) is (x2+3x+9)/(x+3).

(v)  Solution :

(x4+x2+1)/(x2+x+1)

Let f(x)  = (x4+x2+1)/(x2+x+1)

Now we are going to use the following algebraic formula

(x4+x2+1)  =  (x2+1)2 - x2

f(x)  =  [(x2+1)2-x2]/(x2+x+1)

By applying factors in f(x), we get 

f(x)  =  [(x2+1+x) (x2+1-x)]/(x2+x+1)

f(x)  =  [(x2+x+1 ) (x2-x+1)]/(x2+x+1)

f(x)  =  (x2-x+1)

So, the value of f(x) is (x2-x+1).

(vi)  Solution :

(x3+8)/(x4+4x2+16)

Let f(x)  =  (x3+8)/(x4+4x2+16)

x3+8  =  x3+23

x3+23  =  (x+2)(x2+2x+4)

(x4+4x2+16)  =  (x2+4)2-(2x)2

(x4+4x2+16)  =  [(x2+4)+(2x)][(x2+4)-(2x)]

(x4+4x2+16)  =  (x2+2x+4)(x2-2x+4)

By applying the factors, we get

=  (x+2)(x2+2x+4)/(x2+2x+4)(x2-2x+4)

=  (x+2)/(x2-2x+4)

So, the value of f(x) is (x+2)/(x2-2x+4).

(vii)   Solution :

(2x2+x-3)/(2x2+5x+3)  

                       Let f(x)  = (2x2+x-3)/(2x2+5x+3)

2x2+x-3  =  (x-1) (2x+3)

2x2+5x+3  =  (x+1)(2x+3)

By applying the factored form in f(x), we get

f(x)  =  (x-1) (2x+3)/(x+1)(2x+3)

f(x)  =  (x-1)/(x+1)

So, the value of f(x) is (x-1)/(x+1).

(viii)  Solution :

(2x4-162)/(x2+9) (2x-6)

Let f(x)  =  (2x4-162)/(x2+9) (2x-6)

2x4-162  =  2(x4-81)

=  2((x2)2-(92)2)

=  2(x2+9) (x2-9)

2x4-162  =  2(x2+9) (x2-32)

2x4-162  =  2(x2+9) (x+3)(x-3)

2x-6  =  2(x-3)

By applying the factors in f(x), we get

f(x)  =  2(x2+9) (x+3)(x-3)/(x2+9) 2(x-3)

f(x)  =  x+3

So, the value of f(x) is x+3.

(ix)  Solution :

[(x-3) (x2-5x+4)] / [(x-4) (x2-2x-3)]

Let f(x)  =  [(x-3) (x2-5x+4)] / [(x-4) (x2-2x-3)]

x2-5x+4  =  (x-1)(x-4)

x2-2x-3  =  (x-3)(x+1)

By applying the factors of f(x), we get

f(x)  =  [(x-3) (x-1)(x-4)] / [(x-4) (x-3)(x+1)]

By simplifying, we get

f(x)  =  (x-1)/(x+1)

So, the value of f(x) is (x-1)/(x+1).

(x)  Solution :

[(x-8)(x2+5x-50)]/[(x+10)(x2-13x+40)]

Let f(x)  =  [(x-8)(x2+5x-50)]/[(x+10)(x2-13x+40)]

x2+5x-50  =  (x+10)(x-5)

(x2-13x+40)  =  (x-8)(x-5)

f(x)  =  [(x-8)(x+10)(x-5)]/[(x+10)(x-8)(x-5)]

f(x)  =  1

So, the value of f(x) is 1.

(xi)  Solution :

(4x2+9x+5)/(8x2+6x-5)

Let f(x)  =  (4x2+9x+5)/(8x2+6x-5)

4x2+9x+5  =  (x+1) (4x+5)

8x2+6x-5  =  (4x+5) (2x-1)

f(x)  = (x+1)/(2x-1)

So, the value of f(x) is (x+1)/(2x-1).

Apart from the stuff given in this section, if you need any other stuff in math, please use our google custom search here. 

Solo Build It!

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Nature of the Roots of a Quadratic Equation Worksheet

    Aug 10, 22 10:23 PM

    Nature of the Roots of a Quadratic Equation Worksheet

    Read More

  2. Nature of the Roots of a Quadratic Equation

    Aug 10, 22 10:18 PM

    Nature of the Roots of a Quadratic Equation - Concept - Examples

    Read More

  3. Finding a Scale Factor Worksheet

    Aug 10, 22 10:28 AM

    Finding a Scale Factor Worksheet

    Read More