SIMPLIFYING RADICAL EXPRESSIONS WORKSHEET

Subscribe to our โ–ถ๏ธ YouTube channel ๐Ÿ”ด for the latest videos, updates, and tips.

Problem 1 : 

Simplify the radical expression : 

โˆš169 + โˆš121

Problem 2 :

Simplify the radical expression : 

โˆš20 + โˆš320

Problem 3 : 

Simplify the radical expression : 

โˆš117 - โˆš52

Problem 4 :

Simplify the radical expression : 

โˆš243 - 5โˆš12 + โˆš27

Problem 5 :

Simplify the radical expression : 

-โˆš147 - โˆš243

Problem 6 :

Simplify the radical expression : 

(โˆš13)(โˆš26)

Problem 7 :

Simplify the radical expression : 

(3โˆš14)(โˆš35)

Problem 8 :

Simplify the radical expression : 

(8โˆš117) รท (2โˆš52)

Problem 9 :

Simplify the radical expression : 

(8โˆš3)2

Problem 10 :

Simplify the radical expression : 

(โˆš2)3 + โˆš8

Problem 11 :

Simplify the radical expression : 

4โˆš(x4/16)

Problem 12 :

Simplify the radical expression : 

3โˆš(125p6q3)

Detailed Answer Key

Problem 1 : 

Simplify the radical expression : 

โˆš169 + โˆš121

Solution : 

Decompose 169 and 121 into prime factors using synthetic division. 

โˆš169  =  โˆš(13 โ‹… 13)

โˆš169  =  13

โˆš121  =  โˆš(11 โ‹… 11)

โˆš121  =  11

So, we have

โˆš169 + โˆš121  =  13 + 11

โˆš169 + โˆš121  =  24

Problem 2 :

Simplify the radical expression : 

โˆš20 + โˆš320

Solution : 

Decompose 20 and 320 into prime factors using synthetic division. 

โˆš20  =  โˆš(2 โ‹… 2 โ‹… 5)

โˆš20  =  2โˆš5

โˆš320  =  โˆš(2 โ‹… 2 โ‹… 2 โ‹… 2 โ‹… 2 โ‹… 2 โ‹… 5)

โˆš320  =  2 โ‹… 2 โ‹… 2 โ‹… โˆš5

โˆš320  =  8โˆš5

So, we have

โˆš20 + โˆš320  =  2โˆš5 + 8โˆš5

โˆš20 + โˆš320  =  10โˆš5

Problem 3 : 

Simplify the radical expression : 

โˆš117 - โˆš52

Solution : 

Decompose 117 and 52 into prime factors using synthetic division. 

โˆš117  =  โˆš(3 โ‹… 3 โ‹… 13)

โˆš117  =  3โˆš13

โˆš52  =  โˆš(2 โ‹… 2 โ‹… 13)

โˆš52  =  2โˆš13

So, we have

โˆš117 - โˆš52  =  3โˆš13 - 2โˆš13

โˆš117 + โˆš52  =  โˆš13

Problem 4 :

Simplify the radical expression : 

โˆš243 - 5โˆš12 + โˆš27 

Solution : 

Decompose 243, 12 and 27 into prime factors using synthetic division. 

โˆš243  =  โˆš(3 โ‹… 3 โ‹… 3 โ‹… 3 โ‹… 3)  =  9โˆš3

โˆš12  =  โˆš(2 โ‹… 2 โ‹… 3)  =  2โˆš3

โˆš27  =  โˆš(3 โ‹… 3 โ‹… 3)  =  3โˆš3

So, we have

โˆš243 - 5โˆš12 + โˆš27  =  9โˆš3 - 5(2โˆš3) + 3โˆš3

Simplify.

โˆš243 - 5โˆš12 + โˆš27  =  9โˆš3 - 10โˆš3 + 3โˆš3

โˆš243 - 5โˆš12 + โˆš27  =  2โˆš3

Problem 5 :

Simplify the radical expression : 

-โˆš147 - โˆš243 

Solution : 

Decompose 147 and 243 into prime factors using synthetic division. 

โˆš147  =  โˆš(7 โ‹… 7 โ‹… 3)  =  7โˆš3

โˆš243  =  โˆš(3 โ‹… 3 โ‹… 3 โ‹… 3 โ‹… 3)  =  9โˆš3

So, we have

-โˆš147 - โˆš243  =  -7โˆš3 - 9โˆš3

-โˆš147 - โˆš243  =  -16โˆš3

Problem 6 :

Simplify the radical expression : 

(โˆš13)(โˆš26)

Solution : 

Decompose 13 and 26 into prime factors. 

13 is a prime number. So, it can't be decomposed anymore.

โˆš26  =  โˆš(2 โ‹… 13)  =  โˆš2 โ‹… โˆš13

So, we have

(โˆš13)(โˆš26)  =  (โˆš13)(โˆš2 โ‹… โˆš13)

(โˆš13)(โˆš26)  =  (โˆš13 โ‹… โˆš13)โˆš2

(โˆš13)(โˆš26)  =  13โˆš2

Problem 7 :

Simplify the radical expression : 

(3โˆš14)(โˆš35)

Solution : 

Decompose 14 and 35 into prime factors.

โˆš14  =  โˆš(2 โ‹… 7)  =  โˆš2 โ‹… โˆš7

โˆš35  =  โˆš(5 โ‹… 7)  =  โˆš5 โ‹… โˆš7

So, we have

(3โˆš14)(โˆš35)  =  3( โˆš2 โ‹… โˆš7)(โˆš5 โ‹… โˆš7)

(3โˆš14)(โˆš35)  =  3(โˆš7 โ‹… โˆš7)(โˆš2 โ‹… โˆš5)

(3โˆš14)(โˆš35)  =  3(7)โˆš(2 โ‹… 5)

(3โˆš14)(โˆš35)  =  21โˆš10

Problem 8 :

Simplify the radical expression : 

(8โˆš117) รท (2โˆš52)

Solution : 

Decompose 117 and 52 into prime factors using synthetic division.

โˆš117  =  โˆš(3 โ‹… 3 โ‹… 13)

โˆš117  =  3โˆš13

โˆš52  =  โˆš(2 โ‹… 2 โ‹… 13)

โˆš52  =  2โˆš13

(8โˆš117) รท (2โˆš52)  =  8(3โˆš13) รท 2(2โˆš13)

(8โˆš117) รท (2โˆš52)  =  24โˆš13 รท 4โˆš13

(8โˆš117) รท (2โˆš52)  =  24โˆš13 / 4โˆš13

(8โˆš117) รท (2โˆš52)  =  6

Problem 9 :

Simplify the radical expression : 

(8โˆš3)2

Solution :

(8โˆš3)=  8โˆš3 โ‹… 8โˆš3

(8โˆš3)2  =  (โ‹… 8)(โˆš3 โ‹… โˆš3)

(8โˆš3)2  =  (64)(3)

(8โˆš3)2  =  192

Problem 10 :

Simplify the radical expression : 

(โˆš2)3 + โˆš8

  

Solution :

(โˆš2)3 + โˆš8  =  (โˆš2 โ‹… โˆš2 โ‹… โˆš2) + โˆš(2โ‹… โ‹… 2)

(โˆš2)3 + โˆš8  =  (โ‹… โˆš2) + 2โˆš2

(โˆš2)3 + โˆš8  2โˆš2 + 2โˆš2

(โˆš2)3 + โˆš8  =  4โˆš2

Problem 11 :

Simplify the radical expression : 

4โˆš(x4/16)

Solution :

4โˆš(x4/16)  =  4โˆš(x4) / 4โˆš16

4โˆš(x4/16)  =  4โˆš(x โ‹… x โ‹… x โ‹… x) / 4โˆš(2 โ‹… 2 โ‹… 2 โ‹… 2)

4โˆš(x4/16)  =  x / 2

Problem 12 :

Simplify the radical expression : 

3โˆš(125p6q3)

Solution :

3โˆš(125p6q3)  =  3โˆš(5 โ‹… 5 โ‹… 5 โ‹… p2 โ‹… p2 โ‹… p2 โ‹… q โ‹… q โ‹… q)

3โˆš(125p6q3)  =  5p2q

Subscribe to our โ–ถ๏ธ YouTube channel ๐Ÿ”ด for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

ยฉAll rights reserved. onlinemath4all.com

Recent Articles

  1. 10 Hard SAT Math Questions (Part - 37)

    Dec 03, 25 07:02 AM

    digitalsatmath411.png
    10 Hard SAT Math Questions (Part - 37)

    Read More

  2. Factorial Problems and Solutions

    Dec 02, 25 09:27 AM

    Factorial Problems and Solutions

    Read More

  3. 10 Hard SAT Math Questions (Part - 36)

    Nov 28, 25 09:55 AM

    digitalsatmath409.png
    10 Hard SAT Math Questions (Part - 36)

    Read More