SIMPLIFYING RADICAL EXPRESSIONS USING CONJUGATES

Subscribe to our ā–¶ļø YouTube channel šŸ”“ for the latest videos, updates, and tips.

Key Concept

Case 1 :

If the denominator is in the form of a Ā± āˆšb or a Ā± c√b  (where b is a rational number), then we have to multiply both the numerator and denominator by its conjugate.

a + āˆšb and a - āˆšb are conjugate to each other

a + c√b and a - c√b are conjugate to each other

Case 2 :

If the denominator is in the form of āˆšĀ± āˆšb (where a and b are rational numbers), then we have to multiply both the numerator and denominator by its conjugate.

√a + āˆšb and āˆša - āˆšb are conjugate to each other

Radical Conjugate

If the product of two irrational numbers is rational, then  the two irrational numbers are radical conjugate to the other.

Example : 

The product of two irrational numbers āˆš2 and √8 is the rational number 4. 

That is, 

√2 ā‹… āˆš8  =  √(2 ā‹… 8) 

√2 ā‹… āˆš8  =  √16 

√2 ā‹… āˆš8  =  √(4 ā‹… 4)

√2 ā‹… āˆš8  =  4

So, āˆš2 and √8 are radical conjugate to each other. 

Solved Examples

Example 1 :

Simplify : 

1 / (2 + √5)

Solution :

Simplifying the above radical expression is nothing but rationalizing the denominator. 

So, rationalize the denominator. 

Here, the denominator is 2 + āˆš5. 

In the given fraction, multiply both numerator and denominator by the conjugate of 2 + āˆš5. That is 2 - āˆš5.

Example 2 :

Simplify :

(6 + √5) / (6 - √5)

Solution :

Simplifying the above radical expression is nothing but rationalizing the denominator. 

So, rationalize the denominator. 

Here, the denominator is 6 - āˆš5. 

In the given fraction, multiply both numerator and denominator by the conjugate of 6 - āˆš5. That is 6 + āˆš5.

(6 + √5) / (6 - √5)  =  [(6+√5)(6+√5)] / [(6-√5)(6+√5)]

(6 + √5) / (6 - √5)  =  [(6+√5)(6+√5)] / [(6-√5)(6+√5)]

(6 + √5) / (6 - √5)  =  (6 + √5)2 / [6- (√5)2]

(6 + √5) / (6 - √5)  =  [62 + 2(6)(√5) + (√5)2] / (36 - 5)

(6 + √5) / (6 - √5)  =  [36 + 12√5 + 5] / 31

(6 + √5) / (6 - √5)  =  (41 + 12√5) / 31

Example 3 :

Simplify : 

1 / (8 - 2√5)

Solution :

Simplifying the above radical expression is nothing but rationalizing the denominator. 

So, rationalize the denominator. 

Here, the denominator is 8 - 2√5. 

In the given fraction, multiply both numerator and denominator by the conjugate of 8 - 2√5. That is 8 + 2√5.

1 / (8 - 2√5)  =  1(8+2√5) / [(8-2√5)(8+2√5)

1 / (8 - 2√5)  =  (8 + 2√5) / [8- (2√5)2]

1 / (8 - 2√5)  =  (8 + 2√5) / [64 - (4 ā‹… 5]

1 / (8 - 2√5)  =  (8 + 2√5) / [64 - 20]

1 / (8 - 2√5)  =  (8 + 2√5) / 44

1 / (8 - 2√5)  =  2(4 + √5) / 44

1 / (8 - 2√5)  =  (4 + √5) / 22

Example 4 :

Simplify : 

2 / √3

Solution :

Simplifying the above radical expression is nothing but rationalizing the denominator. 

So, rationalize the denominator. 

Here, the denominator is āˆš3. 

In the given fraction, multiply both numerator and denominator by āˆš3.

2 / √3  =  (2√3) / (√3 ā‹… āˆš3)

2 / √3  =  2√3 / 3

Example 5 :

Simplify : 

1/√2  +  1/√5

Solution :

To add the above two fractions, make the denominators same. 

Least common multiple of āˆš2 and āˆš5 is 

=  āˆš2 ā‹… āˆš5

=  āˆš(2 ā‹… 5)

=  āˆš10

Then, 

1/√2  +  1/√5  =  √5/√10  +  √2/√10

1/√2  +  1/√5  =  (√5 + √2) / √10

To rationalize the denominator on the right side, multiply both numerator and denominator by āˆš10.

1/√2  +  1/√5  =  [(√5+√2)√10] / (√10 ā‹… √10)

1/√2  +  1/√5  =  (√50 + √20) / 10

1/√2  +  1/√5  =  (√(5 ā‹… 5 ā‹… 2) + āˆš2 ā‹…ā‹… 5) / 10

1/√2  +  1/√5  =  (5√5 + 2√5) / 10

Subscribe to our ā–¶ļø YouTube channel šŸ”“ for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact Us  |  Privacy Policy

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Quantitative Reasoning Questions and Answers

    Dec 14, 25 06:42 AM

    Quantitative Reasoning Questions and Answers

    Read More

  2. Specifying Units of Measure

    Dec 14, 25 06:38 AM

    Specifying Units of Measure

    Read More

  3. Coin Tossing Probability

    Dec 13, 25 10:11 AM

    Coin Tossing Probability - Concept - Sample Space - Formula - Solved Problems

    Read More