SIMPLIFYING RADICAL EXPRESSIONS BY RATIONALIZING THE DENOMINATOR

Subscribe to our ā–¶ļø YouTube channel šŸ”“ for the latest videos, updates, and tips.

Case 1 :

If the denominator is in the form of āˆšb (where b is a rational number), then we have to multiply both the numerator and denominator by the same āˆšb to rationalize the denominator. 

Case 2 :

If the denominator is in the form of a Ā± āˆšb or a Ā± c√b  (where b is a rational number), then we have to multiply both the numerator and denominator by its conjugate.

a + āˆšb and a - āˆšb are conjugate to each other

a + c√b and a - c√b are conjugate to each other

Case 3 :

If the denominator is in the form of āˆšĀ± āˆšb (where a and b are rational numbers), then we have to multiply both the numerator and denominator by its conjugate.

√a + āˆšb and āˆša - āˆšb are conjugate to each other

Example 1 :

Simplify : 

18 / √6

Solution :

Simplifying the above radical expression is nothing but rationalizing the denominator. 

So, rationalize the denominator. 

Here, the denominator is āˆš6. 

In the given fraction, multiply both numerator and denominator by āˆš6.

18 / √6  =  (18√6) / (√6 ā‹… āˆš6)

18 / √6  =  18√6 / 6

18 / √6  =  3√6

Example 2 :

Simplify : 

1 / (2 + √5)

Solution :

Simplifying the above radical expression is nothing but rationalizing the denominator. 

So, rationalize the denominator. 

Here, the denominator is 2 + āˆš5. 

In the given fraction, multiply both numerator and denominator by the conjugate of 2 + āˆš5. That is 2 - āˆš5.

Example 3 :

Simplify :

(6 + √5) / (6 - √5)

Solution :

Simplifying the above radical expression is nothing but rationalizing the denominator. 

So, rationalize the denominator. 

Here, the denominator is 6 - āˆš5. 

In the given fraction, multiply both numerator and denominator by the conjugate of 6 - āˆš5. That is 6 + āˆš5.

(6 + √5) / (6 - √5)  =  [(6+√5)(6+√5)] / [(6-√5)(6+√5)]

(6 + √5) / (6 - √5)  =  [(6+√5)(6+√5)] / [(6-√5)(6+√5)]

(6 + √5) / (6 - √5)  =  (6 + √5)2 / [6- (√5)2]

(6 + √5) / (6 - √5)  =  [62 + 2(6)(√5) + (√5)2] / (36 - 5)

(6 + √5) / (6 - √5)  =  [36 + 12√5 + 5] / 31

(6 + √5) / (6 - √5)  =  (41 + 12√5) / 31

Example 4 :

Find the values of 'x' and 'y' :

(2 + √3)/(2 - √3)  =  x + y√3

Solution : 

(2 + √3)/(2 - √3)  =  x + y√3

On the left side of the above equation, multiply both numerator and denominator by the conjugate of 2 - āˆš3. That is 2 + āˆš3.

[(2+√3)(2+√5)] / [(2-√3)(2+√3)]  =  x + y√3

(2 + √3)2 / [2- (√3)2]  =  x + y√3

[22 + 2(2)(√3) + (√3)2] / (4 - 3)  =  x + y√3

[4 + 4√3 + 3] / 1  =  x + y√3

7 + 4√3  =  x + y√3

Therefore, 

x  =  7

y  =  4

Example 5 :

Simplify :

√(12x2) / √(30x)

Solution : 

√(12x2) / √(30x)  =  āˆš(12x2/30x)

√(12x2) / √(30x)  =  āˆš(2x/5)

√(12x2) / √(30x)  =  āˆš(2x) / āˆš5

On the right side, multiply both numerator and denominator by √5.

√(12x2) / √(30x)  =  āˆš(2x) ā‹… āˆš5 / āˆš5 ā‹… āˆš5

√(12x2) / √(30x)  =  āˆš(2x ā‹… 5) / 5

√(12x2) / √(30x)  =  āˆš10x / 5

Subscribe to our ā–¶ļø YouTube channel šŸ”“ for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact Us  |  Privacy Policy

©All rights reserved. onlinemath4all.com

onlinemath4all_official_badge.png

Recent Articles

  1. 90 Degree Clockwise Rotation

    Jan 01, 26 06:58 AM

    90degreeclockwiserotation1.png
    90 Degree Clockwise Rotation - Rule - Examples with step by step explanation

    Read More

  2. US Common Core K-12 Curriculum Algebra Solving Systems of Equations

    Jan 01, 26 04:51 AM

    US Common Core K-12 Curriculum - Algebra : Solving Systems of Linear Equations

    Read More

  3. Solving the HARDEST SAT Math Questions ONLY using Desmos

    Dec 31, 25 05:53 AM

    Solving the HARDEST SAT Math Questions ONLY using Desmos

    Read More