SIMPLIFYING EXPONENTIAL EXPRESSIONS

Key Concept

An exponential expression is completely simplified, if.......

• There are no negative exponents. 

• The same base does not appear more than once in a product or quotient. 

• No powers are raised to powers. 

• No products are raised to powers. 

• No quotients are raised to powers. 

• Numerical coefficients in a quotient do not have any common factor other than 1. 

Examples :

b/a, x3, z12, a4b4

Nonexamples :

a-2b, (x ⋅ x2), (z3)4, (a/b)4

Finding Product of Powers

Example 1 :

Simplify : 

a4  b a2

Solution :

=  a4  b a2

Group powers with the same base together. 

=  (a4  a2 b5

Add the exponents of powers with the same base.   

=  a4 + 2  b5

=  a6  b5

Example 2 :

Simplify : 

x2  x  x-4

Solution :

=  x2  x  x-4

Because the powers have the same base, keep the base and add the exponents.  

=  x2 + 1 + (-4)

=  x2 + 1 - 4

=  x-1

=  1/x

Finding Powers of Powers

Example 3 :

Simplify : 

(y2)-4 ⋅ y5

Solution :

=  (y2)-4 ⋅ y5

Use the Power of a Power Property. 

=  y-8 ⋅ y5

=  y-8 + 5

=  y-3

=  1/y3

Example 4 :

Simplify : 

(xy2)-4 ⋅ (x3y5)2

Solution :

=  (xy2)-4 ⋅ (x3y5)2

Use the Power of a Power Property. 

=  x-4(y2)-4 ⋅ (x3)2(y5)2

=  x-4y-8 ⋅ x6y10

Group powers with the same base together. 

=  (x-4 ⋅ x6⋅ (y-8 ⋅ y10)

=  x-4 + 6 ⋅ y-8 + 10

=  x2y2

Finding Powers of Product

Example 5 :

Simplify : 

(-5x)2

Solution :

=  (-5x)2

Use the Power of a Product Property. 

=  (-5)⋅ x2

=  25x2

Example 6 :

Simplify : 

-(5x)2

Solution :

=  -(5x)2

Use the Power of a Product Property. 

=  -(5⋅ x2)

=  -(25 ⋅ x2)

=  -25x2

Example 7 :

Simplify : 

(a-2 ⋅ b0)3

Solution :

=  (a-2 ⋅ b0)3

Use the Power of a Product Property. 

=  (a-2)3 ⋅ (b0)3

=  a-2 ⋅ 3 ⋅ b⋅ 3

=  a-6 ⋅ b0

=  x-6 ⋅ 1

=  1/a6

Finding Quotient of Powers

Example 8 :

Simplify : 

xy3/y5

Solution :

=  xy3/y5

Use the Quotient of Powers Property. 

=  xy3 - 5

=  xy-2

=  x/y2

Example 9 :

Simplify : 

x5y9/(xy)4

Solution :

=  x5y9/(xy)4

Use the Power of a Product Property. 

=  x5y9/x4y4

Use the Quotient of Powers Property. 

=  x5-4 ⋅ y9-4

=  x⋅ y5

=  xy5

Finding Positive Powers of Quotients

Example 10 :

Simplify : 

(2a3/bc)3

Solution :

=  (2a3/bc)3

Use the Power of a Quotient Property. 

=  (2a3)3/(bc)3

Use the Power of a Power Property. 

=  23(a3)3/(b3c3)

=  8a9/b3c3

Finding Negative Powers of Quotients

Example 11 :

Simplify : 

(3a/b2)-3

Solution :

=  (3a/b2)-3

Rewrite with a positive exponent. 

=  (b2/3a)3

Use the Power of a Quotient Property. 

=  (b2)3/(3a)3

Use the Power of a Power Property. 

=  b6/(33a3)

=  b6/27a3

Example 12 :

Simplify : 

(3/4)-1 ⋅ (2a/3b)-2

Solution :

=  (3/4)-1 ⋅ (2a/3b)-2

Rewrite each fraction with a positive exponent. 

=  (4/3)⋅ (3b/2a)2

Use the Power of a Quotient Property. 

=  (4/3) ⋅ (3b)2/(2a)2

Use the Power of a Power Property. 

=  (4/3) ⋅ (32b2/22a2)

=  (4/3) ⋅ (9b2/4a2)

Simplify. 

=  3b2/a2

Example 13 :

If 2k  8w = 220, what is the value of k + 3w?

(A) 8    (B) 12   (C) 16   (D) 20    (E) 24

Solution :

2k  8w = 220

2k  (2)3w = 220

2k+3w = 220

k + 3w = 20

So, the value of k + 3w is 20 and opiton D is correct.

Example 14 :

If x2 = 25, y2 = 4, and (x + 5)(y - 2)  0, then x3 - y3 =

(A) -133    (B) -117    (C) 117     (D) 125    (E) 133

Solution :

x2 = 25, y2 = 4, and (x + 5)(y - 2) = 0

x = -5 and 5, y = -2 and 2

(x + 5)(y - 2)  0

  • If x = -5 then y = 2 or -2, then (x + 5)(y - 2) = 0
  • If y = 2, then x = -5 or x = 5, then (x + 5)(y - 2) = 0

Then the above combinations are not possible.

if x = 5 and y = -2

x3 - y3 = 53 - (-2)3

= 125 + 8

= 133

So, option E is correct.

Example 15 :

What is the value of 3(a - b) 3(a + b)/ 3(2a + 1) ?

(A) 1/3    (B) 1/9    (C) 3     (D) 9

Solution :

Given that,

= 3(a - b) 3(a + b)/ 3(2a + 1)

Using the rules of exponents,

= 3(a - b + a + b)/ 3(2a + 1)

= 32a/ 3(2a + 1)

= 32a - 2a - 1

= 3- 1

By converting the negative exponent as positive exponent, we get

= 1/3

So, option A is correct.

Example 16 :

What is the value of 2(a - 1) (a + 1)/ 2(a - 2) (a + 2) ?

(A) 1/16    (B) 1/8    (C) 8     (D) 16

Solution :

Given that,

= 2(a - 1) (a + 1)/ 2(a - 2) (a + 2)

= 2^(a2 - 12) / 2^(a2 - 22)

= 2^(a2 - 1- (a2 - 22))

= 2^(a2 - 1a2 + 22)

= 2^(- 1 + 4)

= 23

= 8

So, option C is correct.

Example 17 :

 (x2 y3)1/2 (x2 y3)1/3 = (xa/3 ya/2)

If the equation above , where a is a constant , is true for aal positive lvaues of x an dy , what is the value of a ?

(A) 2   (B) 3    (C) 5    (D) 6

Solution :

Given that,

(x2 y3)1/2 (x2 y3)1/3 = (xa/3 ya/2)

x2 x 1/2 y3 x 1/2 x2 x 1/3 y3 x 1/3 = (xa/3 ya/2)

x1 y3/2 x2/3  y1  = (xa/3 ya/2)

x1 + (2/3)  y(3/2) + 1  = (xa/3 ya/2)

x5/3  y5/2  = (xa/3 ya/2)

a/3 = 5/3

Then a = 5, option C is correct.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 214)

    Jul 14, 25 08:54 PM

    digitalsatmath294.png
    Digital SAT Math Problems and Solutions (Part - 214)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 213)

    Jul 13, 25 09:51 AM

    digitalsatmath292.png
    Digital SAT Math Problems and Solutions (Part - 213)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 212)

    Jul 13, 25 09:32 AM

    digitalsatmath290.png
    Digital SAT Math Problems and Solutions (Part - 212)

    Read More