SIMPLIFY EXPRESSIONS INVOLVING EXPONENTIAL FUNCTION

To simplify expression involving exponential function, we will use the required rules from exponents.

xm ⋅ xn  =  xm+n

xm ÷ xn  =  xm-n

(xm)n  =  xmn

(xy)m  =  xm ⋅ ym

(x/y)m  =  xm/ym

x-m  =  1/xm

To see more rules, please visit the page

exponent rules

Example :

Simplify (3n + 6n)/3n

Solution :

=  [3n + (32)n)]/3n

=  [3n(1 + 2n)]/3n

=  1 + 2n

So, the answer is 1 + 2n

Some more examples.

Simplify :

Example 1 :

(4m + 8m)/4m

Solution :

=  (4m + (4⋅2)m)/4m

=  (4m + 4m⋅2)m)/4m

=  [4m(1 + 2m)]/4m

=  1 + 2m

So, the answer is 1 + 2m

Example 2 :

(4m + 8m)/(1 + 2m)

Solution :

 4m+(42)m/(1 + 2m)

 (4m+4m2m)/(1 + 2m)

 4m(1 + 2m)/(1 + 2m)

=  4m

So, the answer is 4m

Example 3 :

(7b + 21b)/7b

Solution :

Given, (7b + 21b)/7b

=  (7b + (7⋅3)b)/7b

=  (7b + 7b⋅3b)/7b

Factoring 7b from the numerator, we get

=  [7b(1 + 3b)]/7b

=  1 + 3b

So, the answer is 1 + 3b

Example 4 :

(4n+2 – 4n)/4n

Solution :

Given, (4n+2 – 4n)/4n

By using exponent of the product rule, we get

=  [(4n. 42) – 4n]/4n

=  [(4n . 16) – 4n]/4n

=  [4n(16 – 1)]/4n

=  15

So, the answer is 15

Example 5 :

(4n+2 – 4n)/15

Solution :

Given, (4n+2 – 4n)/15

By using exponent of the product rule, we get

=  [(4n. 42) – 4n]/15

Factoring 4n from the numerator, we get

=  [(4n . 16) – 4n]/15

=  [4n(16 – 1)]/15

=  4n(15)/15

=  4n

So, the answer is 4n

Example 6 :

(2m+n – 2n)/2n

Solution :

Given, (2m+n – 2n)/2n

By using exponent of the product rule, we get

=  [(2m. 2n) – 2n]/2n

Factoring 2from the numerator, we get

=  [2n(2m – 1)]/2n

=  2m - 1

So, the answer is 2m – 1

Example 7 :

(3n+2 – 3n)/3n+1

Solution :

Given, (3n+2 – 3n)/3n+1

By using exponent of the product rule, we get

=  [(3n. 32) – 3n]/(3n . 31)

=  [(3n . 9) – 3n]/(3n . 3)

=  [3n(9 – 1)]/[3n(3)]

=  8/3

So, the answer is 8/3

Example 8 :

If (-a2 b3)(2ab2)(-3b) = kam bn, what is the value of m + n ?

Solution :

(-a2 b3)(2ab2)(-3b) = kam bn

6a2 ab3b2 b = kam bn

6a2+1 b3+2+1 = kam bn

6ab6 = kam bn

Comparing the corresponding terms, we get

k = 6, m = 3 and n = 6

m + n = 3 + 6

= 9

So, the value of m + n is 9.

Example 8 :

If ((2/3)a2 b)(4/3)(ab)-3 = kam bn, what is the value of k ?

Solution :

((2/3)a2 b)(4/3)(ab)-3 = kam bn

(4/9)a4 b(4/3) [1/(ab)3] = kam bn

(16/27)a4 b[1/a3b3] = kam bn

(16/27) a/b = kam bn

(16/27) a1 b-1 = kam bn

Comparing the corresponding terms, we get

k = 16/27

Example 9 :

If [(x3) (-y)2 z-2] / (x)-2 (y)z = xm /yn zp what is the value of m + n + p ?

Solution :

[(x3) (-y)2 z-2] / (x)-2 (y)z = xm /yn zp

xx2  y2 y3z-2z-1 = xm /yn zp

Using the rules of exponents, we get

x3+2  y2+3 z-2-1 = xm y-n z-p

x y5z-3 = xm y-n z-p

By comparing the corresponding terms, we get

m = 5, -n = 5, -p = -3

m = 5, n = -5 and p = 3

m + n + p = 5 - 5 + 3

= 3

So, the value of m + n + p is 3.

Example 10 :

If 2x = 5, what is the value of 2x + 22x + 23x ?

Solution :

Given that 2x = 5

= 2x + 22x + 23x

= 2x + (2x)2 + (2x)3

Applying the value 2x = 5, we get

= 5 + 52 + 53

= 5 + 25 + 125

= 155

So, the value of expression is 155.

Example 11 :

(3x + 33x) 3x

Which of the following is equivalent to the expressions shown above ?

a)  34x      b) 33x^2     c) 31 + 3x       d) 31 + 2x

Solution :

= (3x + 3+ 3x) 3x

Combining the like terms, we get

= [3 (3x)] 3x

Considering the bases, they are the same.

= (31+x)3x

= 31 + x + x

= 31 + 2x

So, option d is correct.

Example 12 :

(6xy2)(2xy)2 / 8x2y2

If the expression above is written in the form axm yn, what is the value of m + n ?

Solution :

= (6xy2)(2xy)2 / 8x2y2

= (6xy2)(4x2y2) / 8x2y2

= (24x1+2 y2+2) / 8x2y2

= (24x3 y4) / 8x2y2

= 3xy2

Comparing with axm yn

a = 3, m = 1 and n = 2

m + n = 1 + 2

= 3

So, the value of m + n is 3.

Example 13 :

What is the value of 3(a - b) 3(a + b) / 32a + 1  ?

a)  1/3    b)  1/9     c)  3    d)  9

Solution :

3(a - b) 3(a + b) / 32a + 1

= 3(a - b + a + b)/ 32a + 1

= 32a/ 32a + 1

= 32a - (2a + 1)

= 32a - 2a - 1

= 3- 1

= 1/3

Example 14 :

What is the value of 2(a - 1)(a + 1)/ 2(a - 2)(a + 2)  ?

a)  1/16    b)  1/8     c)  8    d)  16

Solution :

= 2(a - 1)(a + 1)/ 2(a - 2)(a + 2) 

Multiplying (a - 1)(a + 1), we get

= a2 - 12

Multiplying (a - 2)(a + 2), we get

= a2 - 22

= a2 - 4

Since the numerator and denominator has same base, we have to use the same base and subtract the powers.

= (a2 - 12) -  (a2 - 4)

= a2 - 12 - a2 + 4

= 3

= 23

= 8

So, the answer is option c.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 214)

    Jul 14, 25 08:54 PM

    digitalsatmath294.png
    Digital SAT Math Problems and Solutions (Part - 214)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 213)

    Jul 13, 25 09:51 AM

    digitalsatmath292.png
    Digital SAT Math Problems and Solutions (Part - 213)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 212)

    Jul 13, 25 09:32 AM

    digitalsatmath290.png
    Digital SAT Math Problems and Solutions (Part - 212)

    Read More